Skip to content

shahcompbio/hairloom

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hairloom

Hairloom is a Python package for analyzing split-read alignments from long-read sequencing data. It provides tools to extract read-level split-read tables from BAM files and process these alignments into breakpoint, segment, and translocation tables for downstream analysis.

Features

  • Extract and normalize split-read alignments from BAM files.
  • Generate tables for:
    • Breakpoints
    • Genomic Segments
    • Translocations
  • Designed for compatibility with long-read sequencing data from platforms like ONT and PacBio.
  • Simple integration with downstream genomic workflows.

Installation

  • Requires python >= 3.9 for smooth installation.
  • Requires pandas >=1.1.0 to run CLI commands (as per requirements.txt).
pip install hairloom

Check integrity of the installation with pytest:

$ pytest
============================ test session starts =============================
platform linux -- Python 3.11.8, pytest-8.1.1, pluggy-1.4.0
rootdir: /data1/shahs3/users/chois7/projects/hairloom
configfile: pyproject.toml
plugins: cov-5.0.0, anyio-4.3.0
collected 29 items

tests/test_cli.py ....                                                 [ 13%]
tests/test_collect.py ........                                         [ 41%]
tests/test_datatypes.py ...........                                    [ 79%]
tests/test_utils.py ......                                             [100%]

============================= 29 passed in 3.43s =============================

Usage

Below is an example usage of the Hairloom CLI:

Input

  • A BAM file (tests/data/test_reads.bam)..
  • A specific genomic region (chrom, start, end).

1. Extract Split-Read Alignments

Use the extract command to extract split-read alignments from a BAM file for a specified region.

Command:

hairloom extract <bam> <chrom> <start> <end>

Example:

hairloom extract tests/data/test_reads.bam chr1 50 150

Output:

A TSV-format of split-read alignment data given to STDOUT:

qname   chrom   start   end   strand   clip1   match   clip2   pclip1
read1   chr1    100     200   +        100     100     0       100

2. Generate Breakpoint Table

Use the breakpoints command to generate a table of breakpoints from a BAM file.

Command:

hairloom breakpoints <bam> <chrom> <start> <end>

Example:

hairloom breakpoints tests/data/test_reads.bam chr1 50 150

Output:

A TSV-format STDOUT stream of breakpoints:

chrom   pos     ori     support
chr1    201     +       1
chr2    300     -       1
chr2    400     +       1
chr2    700     -       1
chr2    800     +       1
chr2    900     -       1

3. Generate Segment Table

Use the segments command to generate a table of breakpoints from a BAM file.

Command:

hairloom segments <bam> <chrom> <start> <end>

Example:

hairloom breakpoints tests/data/test_reads.bam chr1 50 150

Output:

A TSV-format STDOUT stream of genomic segments:

chrom   pos1    pos2    support
chr2    300     400     1
chr2    700     800     1

4. Generate SV Table

Use the svs command to generate a table of breakpoints from a BAM file.

Command:

hairloom svs <bam> <chrom> <start> <end>

Example:

hairloom svs tests/data/test_reads.bam chr1 50 150

Output:

A TSV-format STDOUT stream of breakpoint pairs:

chrom1  pos1    ori1    chrom2  pos2    ori2    support
chr1    201     +       chr2    300     -       1
chr2    400     +       chr2    800     +       1
chr2    700     -       chr2    900     -       1

Python Workflow

Below is an example workflow using Hairloom:

Input

  • A BAM file (tests/data/test_reads.bam)..
  • A specific genomic region (chrom, start, end).

1. Extract Read-Level Split Read Table

import pysam
from hairloom import extract_read_data

# Open the BAM file
bam_path = "tests/data/test_reads.bam"
bam_file = pysam.AlignmentFile(bam_path, "rb")

# Extract split-read alignment table for a region
chrom, start, end = "chr1", 50, 150
read_table = extract_read_data(bam_file, chrom, start, end)

print("Extracted Read-Level Table:")
print(read_table)

Output: A table of split-read alignments with columns like:

  • qname: Read name.
  • chrom: Chromosome.
  • start: Alignment start position.
  • end: Alignment end position.
  • strand: Strand information.
  • clip1, clip2: Soft/hard clip lengths.
  • match: Number of matched bases.
  • pclip1: Strand-corrected clip length.
Extracted Read-Level Split-Read Table:
   qname chrom  start   end strand  clip1  match  clip2  pclip1
0  read1  chr1    101   201      +      0    100    300       0
1  read1  chr2    300   400      +    100    100    200     100
2  read1  chr2    700   800      -    100    100    200     200
3  read1  chr2    900  1000      +    300    100      0     300

2. Generate Breakpoint Table

from hairloom import make_bundle, make_brk_table, make_brk_supports

# Make bundled BreakpointChain from read table
bundle = make_bundle(read_table)

# Create a breakpoint table
breakpoint_table = make_brk_table(bundle)

print(breakpoint_table)

Output: A table of breakpoints with columns:

  • chrom: Chromosome.
  • pos: Position.
  • ori: Orientation (+ or -).
  • support: Support count.
  chrom  pos ori  support
0  chr1  201   +        1
1  chr2  300   -        1
2  chr2  400   +        1
3  chr2  700   -        1
4  chr2  800   +        1
5  chr2  900   -        1

3. Generate Segment Table

from hairloom import make_seg_table

# Generate segment table
segment_table = make_seg_table(bundle)

print(segment_table.head())

Output: A table of genomic segments with columns:

  • chrom: Chromosome.
  • pos1: Start position.
  • pos2: End position.
  • support: Support count.
  chrom  pos1  pos2  support
0  chr2   300   400        1
1  chr2   700   800        1

4. Generate Translocation Table

from hairloom import make_tra_table

# Create a translocation table
translocation_table = make_tra_table(bundle)

print(translocation_table.head())

Output: A table of translocations with columns:

  • chrom1, pos1, ori1: First breakpoint information.
  • chrom2, pos2, ori2: Second breakpoint information.
  • support: Support count.
  chrom1  pos1 ori1 chrom2  pos2 ori2  support
0   chr1   201    +   chr2   300    -        1
1   chr2   400    +   chr2   800    +        1
2   chr2   700    -   chr2   900    -        1

Snippets

Full Workflow

import pysam
from hairloom import (
    extract_read_data,
    make_brk_table,
    make_seg_table,
    make_tra_table,
)

# Open BAM file
bam_file = pysam.AlignmentFile("tests/data/test_reads.bam", "rb")

# Step 1: Extract read-level split-read table
chrom, start, end = "chr1", 50, 150
read_table = extract_read_data(bam_file, chrom, start, end)
bundle = make_bundle(read_table)

# Step 2: Generate breakpoint table
breakpoint_table = make_brk_table(bundle)

# Step 3: Generate segment table
segment_table = make_seg_table(bundle)

# Step 4: Generate translocation table
translocation_table = make_tra_table(bundle)

# Print results
print("Read Table:")
print(read_table.head())
print("\nBreakpoint Table:")
print(breakpoint_table.head())
print("\nSegment Table:")
print(segment_table.head())
print("\nTranslocation Table:")
print(translocation_table.head())

Normalize an SV Table

The normalize_sv_table function sorts and normalizes the breakpoint pairs in a structural variant (SV) table, ensuring consistent ordering for downstream analyses.

import pandas as pd
from hairloom import normalize_sv_table

# Example SV table
sv_data = {
    "chromosome_1": ["chr1", "chr2", "chr1", "chr3"],
    "position_1": [200, 500, 300, 100],
    "strand_1": ["+", "-", "+", "-"],
    "chromosome_2": ["chr1", "chr2", "chr1", "chr2"],
    "position_2": [100, 400, 400, 200],
    "strand_2": ["-", "+", "-", "+"]
}
sv_table = pd.DataFrame(sv_data)

# Normalize the SV table
normalized_sv = normalize_sv_table(sv_table)

print("Original SV Table:")
print(sv_table)
print("\nNormalized SV Table:")
print(normalized_sv)

Output:

Original SV Table:
  chromosome_1  position_1 strand_1 chromosome_2  position_2 strand_2
0         chr1         200        +         chr1         100       -
1         chr2         500        -         chr2         400       +
2         chr1         300        +         chr1         400       -
3         chr3         100        -         chr2         200       +

Normalized SV Table:
  chromosome_1  position_1 strand_1 chromosome_2  position_2 strand_2
0         chr1         100        -         chr1         200       +
1         chr2         400        +         chr2         500       -
2         chr1         300        +         chr1         400       -
3         chr2         200        +         chr3         100       -

Get Structural Variant Type

The get_svtype function determines the type of structural variant (SV) represented by a BreakpointPair. It supports common SV types: translocation (TRA), inversion (INV), duplication (DUP), and deletion (DEL).

from hairloom import Breakpoint, BreakpointPair, get_svtype

# Example BreakpointPairs
tra1 = BreakpointPair(Breakpoint("chr1", 100, "+"), Breakpoint("chr2", 200, "-"))
inv = BreakpointPair(Breakpoint("chr1", 100, "+"), Breakpoint("chr1", 200, "+"))
del_sv = BreakpointPair(Breakpoint("chr1", 300, "+"), Breakpoint("chr1", 500, "-"))
dup = BreakpointPair(Breakpoint("chr1", 500, "-"), Breakpoint("chr1", 700, "+"))

# Get SV types
print("SV Types:")
print(f"TRA: {get_svtype(tra1)}")  # Output: TRA
print(f"INV: {get_svtype(inv)}")    # Output: INV
print(f"DEL: {get_svtype(del_sv)}")  # Output: DEL
print(f"DUP: {get_svtype(dup)}")    # Output: DUP

Output:

SV Types:
TRA: TRA
INV: INV
DEL: DEL
DUP: DUP

Contributing

Contributions are welcome! Please submit issues and pull requests via the GitHub repository.


License

This project is licensed under the MIT License. See the LICENSE file for details.


Feel free to adapt this README.md to fit your exact requirements or additional features in the Hairloom package!

About

A tool for analyzing split reads (focusing on long-read data)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages