Using Virtualenv
[sudo] pip install virtualenv
virtualenv [-p python3] <env_name>
echo <env_name> >> .gitignore
<env_name>/bin/activate
pip install -r requirements.txt
# To deactivate your environment
deactivate
Using Miniconda
conda create -n <env_name> [python=<python_version>]
source activate <env_name>
pip install -r requirements.txt
# To deactivate your environment
source deactivate
├── resources/
│ ├── data/ <- Input data folder
│ └── results/ <- Results folder
├── tfdv/ <- Scripts to compare the system against
| TFX and data-linter
├── third_party/ <- Data-linter and facets source code
├── analyzers.py <- DataFrameAnalyzer
├── error_generation.py <- Error generation utilities
├── evaluation.py <- Evaluation utilities, tests
├── hilda.py <- HILDA'19 showcase
├── messages.py <- Text messages placeholder
├── models.py <- ML models
├── openml.py <- Utilities for using OpenML
├── pipelines.py <- Pipelines
├── profilers.py <- DataFrameProfiler, PipelineProfiler
├── selection.py <- RandomSelector, PairSelector
├── settings.py <- Helper functionality
├── shift_detection.py <- Dataset shift detection utilities
├── test_suite.py <- TestSuite, AutomatedTestSuite
├── transformers.py <- Custom transformers for sklearn pipeline
└── visualization_utils.py <- Visualization utilities
hilda.py <- Showcase on automated unit tests functionality
evaluation.py <- Checks whether errors in data crash the
serving system or affect performance of the
pipelines, and whether unit tests detect these
errors
shift_detection.py <- Snowcase on dataset shift detection