Skip to content

Commit

Permalink
Merge branch 'kohya-ss:main' into qinglong
Browse files Browse the repository at this point in the history
  • Loading branch information
sdbds authored Mar 18, 2024
2 parents 6734818 + f931705 commit 3801fdf
Show file tree
Hide file tree
Showing 73 changed files with 6,756 additions and 1,767 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/typos.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,4 +18,4 @@ jobs:
- uses: actions/checkout@v4

- name: typos-action
uses: crate-ci/typos@v1.16.26
uses: crate-ci/typos@v1.17.2
95 changes: 56 additions & 39 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -249,6 +249,62 @@ ControlNet-LLLite, a novel method for ControlNet with SDXL, is added. See [docum

## Change History

### Mar 15, 2024 / 2024/3/15: v0.8.5

- Fixed a bug that the value of timestep embedding during SDXL training was incorrect.
- Please update for SDXL training.
- The inference with the generation script is also fixed.
- This fix appears to resolve an issue where unintended artifacts occurred in trained models under certain conditions.
We would like to express our deep gratitude to Mark Saint (cacoe) from leonardo.ai, for reporting the issue and cooperating with the verification, and to gcem156 for the advice provided in identifying the part of the code that needed to be fixed.

- SDXL 学習時の timestep embedding の値が誤っていたのを修正しました。
- SDXL の学習時にはアップデートをお願いいたします。
- 生成スクリプトでの推論時についてもあわせて修正しました。
- この修正により、特定の条件下で学習されたモデルに意図しないアーティファクトが発生する問題が解消されるようです。問題を報告いただき、また検証にご協力いただいた leonardo.ai の Mark Saint (cacoe) 氏、および修正点の特定に関するアドバイスをいただいた gcem156 氏に深く感謝いたします。

### Feb 24, 2024 / 2024/2/24: v0.8.4

- The log output has been improved. PR [#905](https://github.com/kohya-ss/sd-scripts/pull/905) Thanks to shirayu!
- The log is formatted by default. The `rich` library is required. Please see [Upgrade](#upgrade) and update the library.
- If `rich` is not installed, the log output will be the same as before.
- The following options are available in each training script:
- `--console_log_simple` option can be used to switch to the previous log output.
- `--console_log_level` option can be used to specify the log level. The default is `INFO`.
- `--console_log_file` option can be used to output the log to a file. The default is `None` (output to the console).
- The sample image generation during multi-GPU training is now done with multiple GPUs. PR [#1061](https://github.com/kohya-ss/sd-scripts/pull/1061) Thanks to DKnight54!
- The support for mps devices is improved. PR [#1054](https://github.com/kohya-ss/sd-scripts/pull/1054) Thanks to akx! If mps device exists instead of CUDA, the mps device is used automatically.
- The `--new_conv_rank` option to specify the new rank of Conv2d is added to `networks/resize_lora.py`. PR [#1102](https://github.com/kohya-ss/sd-scripts/pull/1102) Thanks to mgz-dev!
- An option `--highvram` to disable the optimization for environments with little VRAM is added to the training scripts. If you specify it when there is enough VRAM, the operation will be faster.
- Currently, only the cache part of latents is optimized.
- The IPEX support is improved. PR [#1086](https://github.com/kohya-ss/sd-scripts/pull/1086) Thanks to Disty0!
- Fixed a bug that `svd_merge_lora.py` crashes in some cases. PR [#1087](https://github.com/kohya-ss/sd-scripts/pull/1087) Thanks to mgz-dev!
- DyLoRA is fixed to work with SDXL. PR [#1126](https://github.com/kohya-ss/sd-scripts/pull/1126) Thanks to tamlog06!
- The common image generation script `gen_img.py` for SD 1/2 and SDXL is added. The basic functions are the same as the scripts for SD 1/2 and SDXL, but some new features are added.
- External scripts to generate prompts can be supported. It can be called with `--from_module` option. (The documentation will be added later)
- The normalization method after prompt weighting can be specified with `--emb_normalize_mode` option. `original` is the original method, `abs` is the normalization with the average of the absolute values, `none` is no normalization.
- Gradual Latent Hires fix is added to each generation script. See [here](./docs/gen_img_README-ja.md#about-gradual-latent) for details.

- ログ出力が改善されました。 PR [#905](https://github.com/kohya-ss/sd-scripts/pull/905) shirayu 氏に感謝します。
- デフォルトでログが成形されます。`rich` ライブラリが必要なため、[Upgrade](#upgrade) を参照し更新をお願いします。
- `rich` がインストールされていない場合は、従来のログ出力になります。
- 各学習スクリプトでは以下のオプションが有効です。
- `--console_log_simple` オプションで従来のログ出力に切り替えられます。
- `--console_log_level` でログレベルを指定できます。デフォルトは `INFO` です。
- `--console_log_file` でログファイルを出力できます。デフォルトは `None`(コンソールに出力) です。
- 複数 GPU 学習時に学習中のサンプル画像生成を複数 GPU で行うようになりました。 PR [#1061](https://github.com/kohya-ss/sd-scripts/pull/1061) DKnight54 氏に感謝します。
- mps デバイスのサポートが改善されました。 PR [#1054](https://github.com/kohya-ss/sd-scripts/pull/1054) akx 氏に感謝します。CUDA ではなく mps が存在する場合には自動的に mps デバイスを使用します。
- `networks/resize_lora.py` に Conv2d の新しいランクを指定するオプション `--new_conv_rank` が追加されました。 PR [#1102](https://github.com/kohya-ss/sd-scripts/pull/1102) mgz-dev 氏に感謝します。
- 学習スクリプトに VRAMが少ない環境向け最適化を無効にするオプション `--highvram` を追加しました。VRAM に余裕がある場合に指定すると動作が高速化されます。
- 現在は latents のキャッシュ部分のみ高速化されます。
- IPEX サポートが改善されました。 PR [#1086](https://github.com/kohya-ss/sd-scripts/pull/1086) Disty0 氏に感謝します。
- `svd_merge_lora.py` が場合によってエラーになる不具合が修正されました。 PR [#1087](https://github.com/kohya-ss/sd-scripts/pull/1087) mgz-dev 氏に感謝します。
- DyLoRA が SDXL で動くよう修正されました。PR [#1126](https://github.com/kohya-ss/sd-scripts/pull/1126) tamlog06 氏に感謝します。
- SD 1/2 および SDXL 共通の生成スクリプト `gen_img.py` を追加しました。基本的な機能は SD 1/2、SDXL 向けスクリプトと同じですが、いくつかの新機能が追加されています。
- プロンプトを動的に生成する外部スクリプトをサポートしました。 `--from_module` で呼び出せます。(ドキュメントはのちほど追加します)
- プロンプト重みづけ後の正規化方法を `--emb_normalize_mode` で指定できます。`original` は元の方法、`abs` は絶対値の平均値で正規化、`none` は正規化を行いません。
- Gradual Latent Hires fix を各生成スクリプトに追加しました。詳細は [こちら](./docs/gen_img_README-ja.md#about-gradual-latent)


### Jan 27, 2024 / 2024/1/27: v0.8.3

- Fixed a bug that the training crashes when `--fp8_base` is specified with `--save_state`. PR [#1079](https://github.com/kohya-ss/sd-scripts/pull/1079) Thanks to feffy380!
Expand Down Expand Up @@ -319,45 +375,6 @@ network_multiplier = -1.0
```


### Jan 17, 2024 / 2024/1/17: v0.8.1

- Fixed a bug that the VRAM usage without Text Encoder training is larger than before in training scripts for LoRA etc (`train_network.py`, `sdxl_train_network.py`).
- Text Encoders were not moved to CPU.
- Fixed typos. Thanks to akx! [PR #1053](https://github.com/kohya-ss/sd-scripts/pull/1053)

- LoRA 等の学習スクリプト(`train_network.py``sdxl_train_network.py`)で、Text Encoder を学習しない場合の VRAM 使用量が以前に比べて大きくなっていた不具合を修正しました。
- Text Encoder が GPU に保持されたままになっていました。
- 誤字が修正されました。 [PR #1053](https://github.com/kohya-ss/sd-scripts/pull/1053) akx 氏に感謝します。

### Jan 15, 2024 / 2024/1/15: v0.8.0

- Diffusers, Accelerate, Transformers and other related libraries have been updated. Please update the libraries with [Upgrade](#upgrade).
- Some model files (Text Encoder without position_id) based on the latest Transformers can be loaded.
- `torch.compile` is supported (experimental). PR [#1024](https://github.com/kohya-ss/sd-scripts/pull/1024) Thanks to p1atdev!
- This feature works only on Linux or WSL.
- Please specify `--torch_compile` option in each training script.
- You can select the backend with `--dynamo_backend` option. The default is `"inductor"`. `inductor` or `eager` seems to work.
- Please use `--sdpa` option instead of `--xformers` option.
- PyTorch 2.1 or later is recommended.
- Please see [PR](https://github.com/kohya-ss/sd-scripts/pull/1024) for details.
- The session name for wandb can be specified with `--wandb_run_name` option. PR [#1032](https://github.com/kohya-ss/sd-scripts/pull/1032) Thanks to hopl1t!
- IPEX library is updated. PR [#1030](https://github.com/kohya-ss/sd-scripts/pull/1030) Thanks to Disty0!
- Fixed a bug that Diffusers format model cannot be saved.

- Diffusers、Accelerate、Transformers 等の関連ライブラリを更新しました。[Upgrade](#upgrade) を参照し更新をお願いします。
- 最新の Transformers を前提とした一部のモデルファイル(Text Encoder が position_id を持たないもの)が読み込めるようになりました。
- `torch.compile` がサポートされしました(実験的)。 PR [#1024](https://github.com/kohya-ss/sd-scripts/pull/1024) p1atdev 氏に感謝します。
- Linux または WSL でのみ動作します。
- 各学習スクリプトで `--torch_compile` オプションを指定してください。
- `--dynamo_backend` オプションで使用される backend を選択できます。デフォルトは `"inductor"` です。 `inductor` または `eager` が動作するようです。
- `--xformers` オプションとは互換性がありません。 代わりに `--sdpa` オプションを使用してください。
- PyTorch 2.1以降を推奨します。
- 詳細は [PR](https://github.com/kohya-ss/sd-scripts/pull/1024) をご覧ください。
- wandb 保存時のセッション名が各学習スクリプトの `--wandb_run_name` オプションで指定できるようになりました。 PR [#1032](https://github.com/kohya-ss/sd-scripts/pull/1032) hopl1t 氏に感謝します。
- IPEX ライブラリが更新されました。[PR #1030](https://github.com/kohya-ss/sd-scripts/pull/1030) Disty0 氏に感謝します。
- Diffusers 形式でのモデル保存ができなくなっていた不具合を修正しました。


Please read [Releases](https://github.com/kohya-ss/sd-scripts/releases) for recent updates.
最近の更新情報は [Release](https://github.com/kohya-ss/sd-scripts/releases) をご覧ください。

Expand Down
4 changes: 2 additions & 2 deletions XTI_hijack.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import torch
from library.ipex_interop import init_ipex

from library.device_utils import init_ipex
init_ipex()

from typing import Union, List, Optional, Dict, Any, Tuple
from diffusers.models.unet_2d_condition import UNet2DConditionOutput

Expand Down
33 changes: 33 additions & 0 deletions docs/gen_img_README-ja.md
Original file line number Diff line number Diff line change
Expand Up @@ -452,3 +452,36 @@ python gen_img_diffusers.py --ckpt wd-v1-3-full-pruned-half.ckpt

- `--network_show_meta` : 追加ネットワークのメタデータを表示します。


---

# About Gradual Latent

Gradual Latent is a Hires fix that gradually increases the size of the latent. `gen_img.py`, `sdxl_gen_img.py`, and `gen_img_diffusers.py` have the following options.

- `--gradual_latent_timesteps`: Specifies the timestep to start increasing the size of the latent. The default is None, which means Gradual Latent is not used. Please try around 750 at first.
- `--gradual_latent_ratio`: Specifies the initial size of the latent. The default is 0.5, which means it starts with half the default latent size.
- `--gradual_latent_ratio_step`: Specifies the ratio to increase the size of the latent. The default is 0.125, which means the latent size is gradually increased to 0.625, 0.75, 0.875, 1.0.
- `--gradual_latent_ratio_every_n_steps`: Specifies the interval to increase the size of the latent. The default is 3, which means the latent size is increased every 3 steps.

Each option can also be specified with prompt options, `--glt`, `--glr`, `--gls`, `--gle`.

__Please specify `euler_a` for the sampler.__ Because the source code of the sampler is modified. It will not work with other samplers.

It is more effective with SD 1.5. It is quite subtle with SDXL.

# Gradual Latent について

latentのサイズを徐々に大きくしていくHires fixです。`gen_img.py` 、``sdxl_gen_img.py``gen_img_diffusers.py` に以下のオプションが追加されています。

- `--gradual_latent_timesteps` : latentのサイズを大きくし始めるタイムステップを指定します。デフォルトは None で、Gradual Latentを使用しません。750 くらいから始めてみてください。
- `--gradual_latent_ratio` : latentの初期サイズを指定します。デフォルトは 0.5 で、デフォルトの latent サイズの半分のサイズから始めます。
- `--gradual_latent_ratio_step`: latentのサイズを大きくする割合を指定します。デフォルトは 0.125 で、latentのサイズを 0.625, 0.75, 0.875, 1.0 と徐々に大きくします。
- `--gradual_latent_ratio_every_n_steps`: latentのサイズを大きくする間隔を指定します。デフォルトは 3 で、3ステップごとに latent のサイズを大きくします。

それぞれのオプションは、プロンプトオプション、`--glt``--glr``--gls``--gle` でも指定できます。

サンプラーに手を加えているため、__サンプラーに `euler_a` を指定してください。__ 他のサンプラーでは動作しません。

SD 1.5 のほうが効果があります。SDXL ではかなり微妙です。

Loading

0 comments on commit 3801fdf

Please sign in to comment.