Skip to content

Formalizing and benchmarking open problems in single-cell genomics

License

Notifications You must be signed in to change notification settings

scottgigante-immunai/openproblems

 
 

Repository files navigation

Open Problems in Single-Cell Analysis

GitHub Workflow Status Coverage Status Netlify Status Code Style: Black Style Guide: OpenStack pre-commit Video

Formalizing and benchmarking open problems in single-cell genomics.

Visit the Open Problems Website.

Guides

The team

Core (alphabetically):

  • Daniel Burkhardt (@dburkhardt), Cellarity
  • Robrecht Cannoodt (@rcannoodt), Data Intuitive
  • Scott Gigante (@scottgigante-immunai), Immunai
  • Christopher Lance (@xlancelottx), Helmholtz Munich
  • Malte Luecken (@LuckyMD), Helmholtz Munich
  • Angela Pisco (@aopisco), CZ Biohub

Task leaders (alphabetically):

Full tasks (>1 datasets, >5 methods):

  • Batch integration - Daniel Strobl (@danielStrobl)
  • Cell-cell communication - Daniel Dimitrov (@dbdimitrov)
  • Dimensionality reduction - Michael Vinyard (@mvinyard) and Luke Zappia (@lazappi)
  • Label projection - Nick Markov (@mxposed)
  • Spatial deconvolution - Alma Anderson (@almaan) and Giovanni Palla (@giovp)

Task stubs:

  • Data denoising - Wes Lewis (@weslewis)
  • Multimodal data integration - The Open Problems core team

Tasks in discussion:

  • ATAC denoising - Dominik Otto (@katosh)
  • Differential abundance - Emma Dann (@emdann)
  • Regulatory effect prediction - Qian (Alvin) Qin (@qinqian)

Supervision (alphabetically):

  • Jonathan Bloom (@jbloom22)
  • Smita Krishnaswamy, Yale
  • Fabian Theis, Helmholtz Munich

Chan Zuckerberg Initiative Support (alphabetically):

  • Jonah Cool
  • Fiona Griffin
  • Ivana Williams

Contributors:

See the long list of all those who contributed datasets, methods, metrics, or infrastructure code here

About

Formalizing and benchmarking open problems in single-cell genomics

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

 
 
 

Languages

  • Jupyter Notebook 58.3%
  • Python 39.4%
  • R 1.5%
  • Other 0.8%