This Repository includes YOLOv3 with some lightweight backbones (ShuffleNetV2, GhostNet), some computer vision attention mechanism (SE Block, CBAM Block, ECA Block), pruning,quantization and distillation for GhostNet.
2020.6.1
(1) The best lightweight model——HuaWei GhostNet has been added as the YOLOv3 backbone! It is better than ShuffleNetV2. The result for visdrone dataset is as following.
(2) Add Dorefa quantization method for arbitrary bit quantization! The result for visdrone dataset is as following.
(3) And I delete the ShuffleNet and the attention mechanism.
2020.6.24
(1) Add pruning according to NetworkSlimming.
(2) Add distillation for higher mAP after pruning.
(3) Add Imagenet pretraining model for GhostNet.
Model | Params | FPS | mAP |
---|---|---|---|
GhostNet+YOLOv3 | 23.49M | 62.5 | 35.1 |
Pruned Model+Distillation | 5.81M | 76.9 | 34.3 |
Pruned Model+INT8 | 5.81M | 75.1 | 34 |
Attention : Single GPU will be better
If you need previous attention model or have any question, you can add my WeChat: ssswwwyyy111
- python 3.7
- pytorch >= 1.1.0
- opencv-python
- Oxfordhand datasets (1 class, including human's hand)
https://pan.baidu.com/s/1ZYKXMEvNef41MdG1NgWYiQ (extract code: 00rw) - Visdrone Remote datasets (10 classes, including pedestrian, car, bus, etc)
https://pan.baidu.com/s/1JzJ6APRym8K64taZgcDZfQ (extract code: xyil) - Bdd100K datasets (10 classes, including motor, train, traffic light, etc)
https://pan.baidu.com/s/1dBrKEdy92Mxqg-JiyrVjkQ (extract code: lm4p) - Dior datasets (20 classes, including airplane, airport, bridge, etc)
https://pan.baidu.com/s/1Fc-zJtHy-6iIewvsKWPDnA (extract code: k2js)
- Download the datasets, place them in the data directory
- Train the models by using following command (change the model structure by changing the cfg file)
python3 train.py --data data/visdrone.data --batch-size 16 --cfg cfg/ghostnet-yolov3-visdrone.cfg --img-size 640
- Detect objects using the trained model (place the pictures or videos in the samples directory)
python3 detect.py --cfg cfg/ghostnet-yolov3-visdrone.cfg --weights weights/best.pt --data data/visdrone.data
First of all, execute sparse training.
python3 train.py --data data/visdrone.data --batch-size 4 --cfg cfg/ghost-yolov3-visdrone.cfg --img-size 640 --epochs 300 --device 3 -sr --s 0.0001
Then change cfg and weights in normal_prune.py then use following command
python normal_prune.py
After obtaining pruned.cfg and corresponding weights file, you can fine-tune the pruned model via following command
python3 train.py --data data/visdrone.data --batch-size 4 --cfg pruned.cfg --img-size 640 --epochs 300 --device 3 --weights weights/xxx.weighs
If you want to quantize certain convolutional layer, you can just change the [convolutional] to [quan_convolutional] in cfg file. Then use following command
python3 train.py --data data/visdrone.data --batch-size 16 --cfg cfg/ghostnet-yolov3-visdrone.cfg --img-size 640
Model | Params | Model Size | mAP |
---|---|---|---|
ShuffleNetV2 1x | 3.57M | 13.89MB | 51.2 |
ShuffleNetV2 1.5x | 5.07M | 19.55MB | 56.4 |
YOLOv3-tiny | 8.67M | 33.1MB | 60.3 |
Model | Params | Model Size | mAP |
---|---|---|---|
ShuffleNetV2 1x | 3.59M | 13.99MB | 10.2 |
ShuffleNetV2 1.5x | 5.09M | 19.63MB | 11 |
YOLOv3-tiny | 8.69M | 33.9MB | 3.3 |
SE Block paper : https://arxiv.org/abs/1709.01507
CBAM Block paper : https://arxiv.org/abs/1807.06521
ECA Block paper : https://arxiv.org/abs/1910.03151
Model | Params | mAP |
---|---|---|
YOLOv3-tiny | 8.67M | 60.3 |
YOLOv3-tiny + SE | 8.933M | 62.3 |
YOLOv3-tiny + CBAM | 8.81M | 62.7 |
YOLOv3-tiny + ECA | 8.67M | 62.6 |
- ShuffleNetV2 backbone
- HuaWei GhostNet backbone
- ImageNet pretraining
- COCO datasets training
- Other detection strategies
- Other pruning strategies