forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* [Model] Add APPNP model * update * Revert "update" This reverts commit a8e42d1. * update * Update appnp.py
- Loading branch information
Showing
3 changed files
with
244 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
Predict then Propagate: Graph Neural Networks meet Personalized PageRank (APPNP) | ||
============ | ||
|
||
- Paper link: [Predict then Propagate: Graph Neural Networks meet Personalized PageRank](https://arxiv.org/abs/1810.05997) | ||
- Author's code repo: [https://github.com/klicperajo/ppnp](https://github.com/klicperajo/ppnp). | ||
|
||
Dependencies | ||
------------ | ||
- PyTorch 0.4.1+ | ||
- requests | ||
|
||
``bash | ||
pip install torch requests | ||
`` | ||
|
||
Code | ||
----- | ||
The folder contains an implementation of APPNP (`appnp.py`). | ||
|
||
Results | ||
------- | ||
|
||
Run with following (available dataset: "cora", "citeseer", "pubmed") | ||
```bash | ||
python train.py --dataset cora --gpu 0 | ||
``` | ||
|
||
* cora: 0.8370 (paper: 0.850) | ||
* citeseer: 0.715 (paper: 0.757) | ||
* pubmed: 0.793 (paper: 0.797) | ||
|
||
Differences from the original implementation | ||
--------- | ||
|
||
- This implementation does not perform dropout on adjacency matrices during propagation step. | ||
- Experiments were done on dgl datasets (GCN settings) which are different from those used in the original implementation. (discrepancies are detailed in experimental section of the original paper) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
""" | ||
APPNP implementation in DGL. | ||
References | ||
---------- | ||
Paper: https://arxiv.org/abs/1810.05997 | ||
Author's code: https://github.com/klicperajo/ppnp | ||
""" | ||
|
||
import torch.nn as nn | ||
import dgl.function as fn | ||
|
||
|
||
class APPNP(nn.Module): | ||
def __init__(self, | ||
g, | ||
in_feats, | ||
hiddens, | ||
n_classes, | ||
activation, | ||
dropout, | ||
alpha, | ||
k): | ||
super(APPNP, self).__init__() | ||
self.layers = nn.ModuleList() | ||
self.g = g | ||
# input layer | ||
self.layers.append(nn.Linear(in_feats, hiddens[0])) | ||
# hidden layers | ||
for i in range(1, len(hiddens)): | ||
self.layers.append(nn.Linear(hiddens[i - 1], hiddens[i])) | ||
# output layer | ||
self.layers.append(nn.Linear(hiddens[-1], n_classes)) | ||
self.activation = activation | ||
if dropout: | ||
self.dropout = nn.Dropout(p=dropout) | ||
else: | ||
self.dropout = 0. | ||
self.K = k | ||
self.alpha = alpha | ||
|
||
def reset_parameters(self): | ||
for layer in self.layers: | ||
layer.reset_parameters() | ||
|
||
def forward(self, features): | ||
# prediction step | ||
h = features | ||
if self.dropout: | ||
h = self.dropout(h) | ||
h = self.activation(self.layers[0](h)) | ||
for layer in self.layers[1:-1]: | ||
h = self.activation(layer(h)) | ||
if self.dropout: | ||
h = self.layers[-1](self.dropout(h)) | ||
# propagation step without dropout on adjacency matrices | ||
self.cached_h = h | ||
for _ in range(self.K): | ||
# normalization by square root of src degree | ||
h = h * self.g.ndata['norm'] | ||
self.g.ndata['h'] = h | ||
# message-passing without performing adjacency dropout | ||
self.g.update_all(fn.copy_src(src='h', out='m'), | ||
fn.sum(msg='m', out='h')) | ||
h = self.g.ndata.pop('h') | ||
# normalization by square root of dst degree | ||
h = h * self.g.ndata['norm'] | ||
# update h using teleport probability alpha | ||
h = h * (1 - self.alpha) + self.cached_h * self.alpha | ||
|
||
return h |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
import argparse, time | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from dgl import DGLGraph | ||
from dgl.data import register_data_args, load_data | ||
import dgl | ||
from appnp import APPNP | ||
|
||
def evaluate(model, features, labels, mask): | ||
model.eval() | ||
with torch.no_grad(): | ||
logits = model(features) | ||
logits = logits[mask] | ||
labels = labels[mask] | ||
_, indices = torch.max(logits, dim=1) | ||
correct = torch.sum(indices == labels) | ||
return correct.item() * 1.0 / len(labels) | ||
|
||
def main(args): | ||
# load and preprocess dataset | ||
data = load_data(args) | ||
features = torch.FloatTensor(data.features) | ||
labels = torch.LongTensor(data.labels) | ||
train_mask = torch.ByteTensor(data.train_mask) | ||
val_mask = torch.ByteTensor(data.val_mask) | ||
test_mask = torch.ByteTensor(data.test_mask) | ||
in_feats = features.shape[1] | ||
n_classes = data.num_labels | ||
n_edges = data.graph.number_of_edges() | ||
print("""----Data statistics------' | ||
#Edges %d | ||
#Classes %d | ||
#Train samples %d | ||
#Val samples %d | ||
#Test samples %d""" % | ||
(n_edges, n_classes, | ||
train_mask.sum().item(), | ||
val_mask.sum().item(), | ||
test_mask.sum().item())) | ||
|
||
if args.gpu < 0: | ||
cuda = False | ||
else: | ||
cuda = True | ||
torch.cuda.set_device(args.gpu) | ||
features = features.cuda() | ||
labels = labels.cuda() | ||
train_mask = train_mask.cuda() | ||
val_mask = val_mask.cuda() | ||
test_mask = test_mask.cuda() | ||
|
||
# graph preprocess and calculate normalization factor | ||
g = DGLGraph(data.graph) | ||
n_edges = g.number_of_edges() | ||
# add self loop | ||
g.add_edges(g.nodes(), g.nodes()) | ||
g.set_n_initializer(dgl.init.zero_initializer) | ||
g.set_e_initializer(dgl.init.zero_initializer) | ||
# normalization | ||
degs = g.in_degrees().float() | ||
norm = torch.pow(degs, -0.5) | ||
norm[torch.isinf(norm)] = 0 | ||
if cuda: | ||
norm = norm.cuda() | ||
g.ndata['norm'] = norm.unsqueeze(1) | ||
|
||
# create APPNP model | ||
model = APPNP(g, | ||
in_feats, | ||
args.hidden_sizes, | ||
n_classes, | ||
F.relu, | ||
args.dropout, | ||
args.alpha, | ||
args.k) | ||
|
||
if cuda: | ||
model.cuda() | ||
model.reset_parameters() | ||
loss_fcn = torch.nn.CrossEntropyLoss() | ||
|
||
# use optimizer | ||
optimizer = torch.optim.Adam(model.parameters(), | ||
lr=args.lr, | ||
weight_decay=args.weight_decay) | ||
|
||
# initialize graph | ||
dur = [] | ||
for epoch in range(args.n_epochs): | ||
model.train() | ||
if epoch >= 3: | ||
t0 = time.time() | ||
# forward | ||
logits = model(features) | ||
loss = loss_fcn(logits[train_mask], labels[train_mask]) | ||
|
||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
if epoch >= 3: | ||
dur.append(time.time() - t0) | ||
|
||
acc = evaluate(model, features, labels, val_mask) | ||
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " | ||
"ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(), | ||
acc, n_edges / np.mean(dur) / 1000)) | ||
|
||
print() | ||
acc = evaluate(model, features, labels, test_mask) | ||
print("Test Accuracy {:.4f}".format(acc)) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='APPNP') | ||
register_data_args(parser) | ||
parser.add_argument("--dropout", type=float, default=0.5, | ||
help="dropout probability") | ||
parser.add_argument("--gpu", type=int, default=-1, | ||
help="gpu") | ||
parser.add_argument("--lr", type=float, default=1e-2, | ||
help="learning rate") | ||
parser.add_argument("--n-epochs", type=int, default=200, | ||
help="number of training epochs") | ||
parser.add_argument("--hidden_sizes", type=int, nargs='+', default=[64], | ||
help="hidden unit sizes for appnp") | ||
parser.add_argument("--k", type=int, default=10, | ||
help="Number of propagation steps") | ||
parser.add_argument("--alpha", type=float, default=0.1, | ||
help="Teleport Probability") | ||
parser.add_argument("--weight-decay", type=float, default=5e-4, | ||
help="Weight for L2 loss") | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
main(args) |