Skip to content

Code for "Towards Explainable Multi-modal Motion Prediction using Graph Representations"

License

Notifications You must be signed in to change notification settings

sancarlim/Explainable-MP

Repository files navigation

Towards Explainable Multi-modal Motion Prediction using Graph Representations

DOI

This repository contains code for "Towards Explainable Motion Prediction using Heterogeneous Graph Representations" by Sandra Carrasco Limeros, Sylwia Majchrowska, Joakim Johnander, Christoffer Petersson and David Fernández Llorca, 2022.

@misc{Carrasco:22b,
  doi = {10.48550/ARXIV.2212.03806},
  url = {https://arxiv.org/abs/2212.03806},
  author = {Carrasco Limeros, Sandra and Majchrowska, Sylwia
            and Johnander, Joakim and Petersson, Christoffer
            and Llorca, David Fernández},
  title = {Towards Explainable Motion Prediction using Heterogeneous Graph Representations},
  publisher = {arXiv},
  year = {2022}
}

Note: This repository is built on PGP repository

Installation

  1. Clone this repository

  2. Set up a new conda environment

conda create --name xscout python=3.7.10
  1. Install dependencies
conda activate xscout

# nuScenes devkit
pip install nuscenes-devkit

# Pytorch: The code has been tested with Pytorch 1.7.1, CUDA 10.1, but should work with newer versions
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch

# Additional utilities
pip install ray
pip install psutil
pip install scipy
pip install positional-encodings
pip install imageio
pip install tensorboard
pip install dgl-cu101

Dataset

  1. Download the nuScenes dataset. For this project we just need the following.

    • Metadata for the Trainval split (v1.0)
    • Map expansion pack (v1.3)
  2. Organize the nuScenes root directory as follows

└── nuScenes/
    ├── maps/
    |   ├── basemaps/
    |   ├── expansion/
    |   ├── prediction/
    |   ├── 36092f0b03a857c6a3403e25b4b7aab3.png
    |   ├── 37819e65e09e5547b8a3ceaefba56bb2.png
    |   ├── 53992ee3023e5494b90c316c183be829.png
    |   └── 93406b464a165eaba6d9de76ca09f5da.png
    └── v1.0-trainval
        ├── attribute.json
        ├── calibrated_sensor.json
        ...
        └── visibility.json         
  1. Run the following script to extract pre-processed data. This speeds up training significantly.
python preprocess.py -c configs/preprocess_nuscenes.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data

You can download the preprocessed data in this link.

Evaluation

You can download the trained model weights using this link.

To evaluate on the nuScenes val set run the following script. This will generate a text file with evaluation metrics at the specified output directory. The results should match the benchmark entry on Eval.ai.

python evaluate.py -c configs/xscout_pgp.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data -o path/to/output/directory -w path/to/trained/weights

Visualization

To visualize predictions run the following script. This will generate gifs for a set of instance tokens (track ids) from nuScenes val at the specified output directory.

python visualize.py -c configs/xscout_pgp.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data -o path/to/output/directory -w path/to/trained/weights 

You can indicate the number of modes and future temporal horizon to visualize with --num_modes and --tf respectively.

Training

To train the model from scratch, run

python train.py -c configs/xscout_pgp.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data -o path/to/output/directory -n 100

The training script will save training checkpoints and tensorboard logs in the output directory. Wandb logger is also supported. You need to specify the entity and project in the wandb.init function in train.py. If you do not want to log in wandb, please use --nowandb argument.

To launch tensorboard, run

tensorboard --logdir=path/to/output/directory/tensorboard_logs

Robustness analysis

This repository contains the code to reproduce the robustness analysis (Section IV) presented in "Towards Trustworthy Multi-Modal Motion Prediction: Evaluation and Interpretability" by Sandra Carrasco, Sylwia Majchrowska,Joakim Johnander, Christoffer Petersson and David Fernández LLorca, presented at .. 2022.

You can download the PGP trained model weights using this link.

To evaluate on the nuScenes val set, you can indicate the probability of randomly masking out dynamic objects and/or lanes in agent_mask_p_veh, agent_mask_p_ped and lane_mask_prob arguments in the configuration file configs/pgp_gatx2_lvm_traversal.yml . Indicate a probability of masking out random frames of interacting agents using mask_frames_p argument.

python evaluate.py -c configs/pgp_gatx2_lvm_traversal.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data -o path/to/output/directory -w path/to/trained/weights

About

Code for "Towards Explainable Multi-modal Motion Prediction using Graph Representations"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages