-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit e0cd068
Showing
19 changed files
with
3,394 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
.vscode/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
<p align="center"> | ||
|
||
<h1 align="center"><a href="https://sairajk.github.io/easi-tex" target="_blank">EASI-Tex: Edge-Aware Mesh Texturing from Single Image</a></h1> | ||
|
||
<p align="center"> | ||
<a href="https://sairajk.github.io/" target="_blank"><strong>Sai Raj Kishore Perla</strong></a> | ||
· | ||
<a href="https://yizhiwang96.github.io/" target="_blank"><strong>Yizhi Wang</strong></a> | ||
· | ||
<a href="https://www.sfu.ca/~amahdavi/" target="_blank"><strong>Ali Mahdavi-Amiri</strong></a> | ||
· | ||
<a href="https://www.cs.sfu.ca/~haoz/" target="_blank"><strong>Hao (Richard) Zhang</strong></a> | ||
<br /> | ||
<i>ACM Transactions on Graphics (SIGGRAPH 2024)</i> | ||
</p> | ||
|
||
<p align="center"> | ||
<a href="" target="_blank"><strong>arXiv</strong></a> | ||
| | ||
<a href="https://sairajk.github.io/easi-tex" target="_blank"><strong>Project Page</strong></a> | ||
</p> | ||
|
||
<div align="center"> | ||
<a> | ||
<img src="./static/assets/v2_teaser.jpg" alt="Logo" width="100%"> | ||
</a> | ||
</div> | ||
</p> | ||
|
||
We present a novel approach for single-image mesh texturing, which employs a diffusion model with judicious conditioning to seamlessly transfer an object's texture from a single RGB image to a given 3D mesh object. We do not assume that the two objects belong to the same category, and even if they do, there can be significant discrepancies in their geometry and part proportions. Our method aims to rectify the discrepancies by conditioning a pre-trained Stable Diffusion generator with edges describing the mesh through ControlNet, and features extracted from the input image using IP-Adapter to generate textures that respect the underlying geometry of the mesh and the input texture without any optimization or training. We also introduce Image Inversion, a novel technique to quickly personalize the diffusion model for a single concept using a single image, for cases where the pre-trained IP-Adapter falls short in capturing all the details from the input image faithfully. Experimental results demonstrate the efficiency and effectiveness of our edge-aware single-image mesh texturing approach, coined EASI-Tex, in preserving the details of the input texture on diverse 3D objects, while respecting their geometry. | ||
|
||
## Citation | ||
|
||
If you found our work helpful, please consider citing: | ||
|
||
```bibtex | ||
@article{perla2024easitex, | ||
title={EASI-Tex: Edge-Aware Mesh Texturing from Single Image}, | ||
author = {Perla, Sai Raj Kishore and Wang, Yizhi and Mahdavi-Amiri, Ali and Zhang, Hao}, | ||
journal = {ACM Transactions on Graphics (TOG)}, | ||
publisher = {ACM New York, NY, USA}, | ||
year = {2024}, | ||
volume = {43}, | ||
number = {4}, | ||
articleno = {40}, | ||
doi = {10.1145/3648611}, | ||
url = {https://github.com/sairajk/easi-tex}, | ||
} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
<!DOCTYPE html> | ||
<html> | ||
|
||
<head> | ||
<meta charset="utf-8"> | ||
<meta name="description" content="EASI-Tex: Edge-Aware Mesh Texturing from Single Image"> | ||
<meta name="keywords" content="EASI-Tex, edge-aware, single image, texture transfer, diffusion, 3D textures, 3D contents, generation"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1"> | ||
<title>EASI-Tex: Edge-Aware Mesh Texturing from Single Image</title> | ||
|
||
<!-- Google tag (gtag.js) --> | ||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-5SVQBE9MCP"></script> | ||
<script> | ||
window.dataLayer = window.dataLayer || []; | ||
function gtag(){dataLayer.push(arguments);} | ||
gtag('js', new Date()); | ||
gtag('config', 'G-5SVQBE9MCP'); | ||
</script> | ||
|
||
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet"> | ||
|
||
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" | ||
rel="stylesheet"> | ||
|
||
<link rel="stylesheet" href="./static/css/bulma.min.css"> | ||
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css"> | ||
<link rel="stylesheet" href="./static/css/bulma-slider.min.css"> | ||
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css"> | ||
<link rel="stylesheet" | ||
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"> | ||
<link rel="stylesheet" href="./static/css/index.css"> | ||
|
||
<link rel="icon" href="./static/assets/capam_sheild.png"> | ||
|
||
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> | ||
<script defer src="./static/js/fontawesome.all.min.js"></script> | ||
<script src="./static/js/bulma-carousel.min.js"></script> | ||
<script src="./static/js/bulma-slider.min.js"></script> | ||
<script src="./static/js/index.js"></script> | ||
|
||
<!-- For Latex --> | ||
<script type="text/x-mathjax-config"> | ||
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); | ||
</script> | ||
<script type="text/javascript" async | ||
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-MML-AM_CHTML"> | ||
</script> | ||
</head> | ||
|
||
<body> | ||
<section class="hero"> | ||
<div class="hero-body"> | ||
<div class="container is-max-desktop"> | ||
<div class="columns is-centered"> | ||
<div class="column has-text-centered"> | ||
<h1 class="title is-1 publication-title">EASI-Tex: Edge-Aware Mesh Texturing from Single Image</h1> | ||
<div class="is-size-5 publication-authors"> | ||
<span class="author-block"> | ||
<a href="https://sairajk.github.io/">Sai Raj Kishore Perla</a><sup>1</sup>,</span> | ||
<span class="author-block"> | ||
<a href="https://yizhiwang96.github.io/">Yizhi Wang</a><sup>1</sup>,</span> | ||
<span class="author-block"> | ||
<a href="https://www.sfu.ca/~amahdavi/">Ali Mahdavi-Amiri</a><sup>1</sup>,</span> | ||
<span class="author-block"> | ||
<a href="https://www.cs.sfu.ca/~haoz/">Hao (Richard) Zhang</a><sup>1,2</sup>, | ||
</span> | ||
</div> | ||
|
||
<div class="is-size-5 publication-authors"> | ||
<span class="author-block"><sup>1</sup>Simon Fraser University,</span> | ||
<span class="author-block"><sup>2</sup>Amazon, Canada</span> | ||
</div> | ||
|
||
<br> | ||
|
||
<div class="is-size-5 publication-authors"> | ||
<span class="title is-4">ACM Transactions on Graphics (SIGGRAPH 2024)</span> | ||
</div> | ||
|
||
<div class="column has-text-centered"> | ||
<div class="publication-links"> | ||
<!-- PDF Link. --> | ||
<span class="link-block"> | ||
<a href="" target="_blank" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="fas fa-file-pdf"></i> | ||
</span> | ||
<span>Paper</span> | ||
</a> | ||
</span> | ||
<span class="link-block"> | ||
<a class="external-link button is-normal is-rounded is-dark" href="" target="_blank"> | ||
<span class="icon"> | ||
<i class="ai ai-arxiv"></i> | ||
</span> | ||
<span>arXiv</span> | ||
</a> | ||
</span> | ||
|
||
<!-- Video Link. --> | ||
<!-- <span class="link-block"> | ||
<a href="" target="_blank" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="fab fa-youtube"></i> | ||
</span> | ||
<span>Video</span> | ||
</a> | ||
</span> --> | ||
|
||
<!-- Github Link. --> | ||
<span class="link-block"> | ||
<a href="https://github.com/sairajk/easi-tex" class="external-link button is-normal is-rounded is-dark" target="_blank"> | ||
<span class="icon"> | ||
<i class="fab fa-github"></i> | ||
</span> | ||
<span>Code</span> | ||
</a> | ||
</span> | ||
<!-- Dataset Link. --> | ||
<span class="link-block"></span> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</section> | ||
|
||
<section class="hero teaser"> | ||
<div class="container is-max-desktop"> | ||
<div class="hero-body"> | ||
|
||
<div class="columns is-centered has-text-centered"> | ||
<!-- <div class="column is-four-fifths"> --> | ||
<div class="column is-full-width"> | ||
<video poster="" id="teaser" autoplay controls muted loop playsinline height="100%"> | ||
<source src="./static/assets/out_4c.mp4" | ||
type="video/mp4"> | ||
</video> | ||
</div> | ||
</div> | ||
|
||
<h2 class=" subtitle has-text-centered" style="padding-top: 10px"> | ||
<b>EASI-Tex</b> seamlessly transfers an object's texture from a single RGB image to a given 3D mesh. Our method exhibits natural textures for the 3D objects, respecting its semantics, and better preservation of geometric details and features, while being faithful to the input texture. | ||
</h2> | ||
</div> | ||
</div> | ||
</section> | ||
|
||
<section class="section"> | ||
<div class="container is-max-desktop"> | ||
<!-- Abstract. --> | ||
<div class="columns is-centered has-text-centered"> | ||
<div class="column is-four-fifths"> | ||
<h2 class="title is-3">Abstract</h2> | ||
<div class="content has-text-justified"> | ||
We present a novel approach for <i>single-image mesh texturing</i>, which employs a diffusion model with judicious conditioning to seamlessly transfer an object's texture from a single RGB image to a given 3D mesh object. | ||
We do not assume that the two objects belong to the same category, and even if they do, there can be significant discrepancies in their geometry and part proportions. | ||
Our method aims to rectify the discrepancies by conditioning a pre-trained Stable Diffusion generator with edges describing the mesh through ControlNet, and features extracted from the input image using IP-Adapter to generate textures that respect the underlying geometry of the mesh and the input texture without any optimization or training. | ||
We also introduce <i>Image Inversion</i>, a novel technique to quickly personalize the diffusion model for a single concept using a <i>single image</i>, for cases where the pre-trained IP-Adapter falls short in capturing all the details from the input image faithfully. | ||
Experimental results demonstrate the efficiency and effectiveness of our edge-aware single-image mesh texturing approach, coined <b>EASI-Tex</b>, in preserving the details of the input texture on diverse 3D objects, while respecting their geometry. | ||
</div> | ||
</div> | ||
</div> | ||
<!--/ Abstract. --> | ||
</div> | ||
</section> | ||
|
||
<section class="section"> | ||
<div class="container is-max-desktop"> | ||
<!-- Our Approch. --> | ||
<div class="columns is-centered has-text-centered"> | ||
<div class="column is-full-width"> | ||
<h2 class="title is-3">Our Approch</h2> | ||
<img src="./static/assets/pipeline.jpg"/> | ||
<div class="content has-text-centered" style="padding-top: 10px"> | ||
The pipeline of <b>EASI-Tex</b> for <i>Image Inversion</i> (left) and generating textured views (right). | ||
</div> | ||
</div> | ||
</div> | ||
<!--/ Our Approch. --> | ||
|
||
<!-- Description. --> | ||
<div class="columns is-centered has-text-centered"> | ||
<div class="column is-four-fifths"> | ||
<!-- <h2 class="title is-3">Video</h2> --> | ||
<div class="content has-text-justified"> | ||
<p> | ||
The texture generation network takes an untextured 3D mesh $(\textbf{M})$, a reference texture image $(\mathbf{I_{tex}})$, and a descriptive text prompt as input to generate a textured view of the mesh as output. | ||
<!-- Stable Diffusion’s U-Net is guided by three conditioning signals: (1) features $(\mathbf{f_{geo}})$ extracted from the edge map of a sampled view of the 3D mesh, through ControlNet, (2) features $(\mathbf{f_{tex}})$ extracted from the input texture image, through IP-Adapter, and (3) a text prompt describing the desired textured output, through $\mathbf{f_{txt}}$. --> | ||
</p> | ||
<p> | ||
Apart from text, we condition the generation process with edges describing the mesh, through ControlNet, and the input texture image, through IP-Adapter. | ||
<!-- We propose to extract edges from various geometric attributes of the mesh, such as connected components, depth, and mesh normals. --> | ||
Edge conditioning allows us to respect the "identity" of the mesh better, than depth or normals, and IP-Adapter allows us to use a single image as prompt without any additional training or optimization. | ||
</p> | ||
<p> | ||
We also introduce <i>Image Inversion</i>, a novel technique to quickly personalize the diffusion model for a single concept using a single image. It is an optional step and we use it for cases where the pre-trained IP-Adapter falls short in capturing all the details from the input texture image faithfully. It involves fine-tuning parts of our network: Stable Diffusion's U-Net and IP-Adapter's Projection Network (indicated by 🔥), for a few iterations using a single image $\mathbf{I_{tex}}$. | ||
</p> | ||
<p> | ||
Check out the paper to learn more. 🙂 | ||
</p> | ||
</div> | ||
</div> | ||
</div> | ||
<!--/ Description. --> | ||
</div> | ||
</section> | ||
|
||
<section class="section" id="BibTeX"> | ||
<div class="container is-max-desktop content"> | ||
<h2 class="title is-3">BibTeX</h2> | ||
<pre> | ||
<code style="display: block; white-space: pre-wrap; margin-block-start: -20px; margin-block-end: -35px;"> | ||
@article{perla2024easitex, | ||
title={EASI-Tex: Edge-Aware Mesh Texturing from Single Image}, | ||
author = {Perla, Sai Raj Kishore and Wang, Yizhi and Mahdavi-Amiri, Ali and Zhang, Hao}, | ||
journal = {ACM Transactions on Graphics (TOG)}, | ||
publisher = {ACM New York, NY, USA}, | ||
year = {2024}, | ||
volume = {43}, | ||
number = {4}, | ||
articleno = {40}, | ||
doi = {10.1145/3648611}, | ||
url = {https://github.com/sairajk/easi-tex}, | ||
} | ||
</code> | ||
</pre> | ||
</div> | ||
</section> | ||
|
||
<footer class="footer"> | ||
<div class="container"> | ||
<div class="content has-text-centered"> | ||
|
||
<a class="icon-link" href="" target="_blank"> | ||
<i class="fas fa-file-pdf"></i> | ||
</a> | ||
<a class="icon-link" href="" target="_blank"> | ||
<i class="ai ai-arxiv"></i> | ||
</a> | ||
<a class="icon-link" href="https://github.com/sairajk/easi-tex" class="external-link" disabled target="_blank"> | ||
<i class="fab fa-github"></i> | ||
</a> | ||
</div> | ||
<div class="columns is-centered"> | ||
<div class="column is-8"> | ||
<div class="content"> | ||
<p style="text-align:center"> | ||
This webpage template is adapted from <a href="https://nerfies.github.io/" target="_blank">Nerfies</a> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</footer> | ||
|
||
</body> | ||
|
||
</html> |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.