-
Notifications
You must be signed in to change notification settings - Fork 3
/
MIL_test.py
553 lines (444 loc) · 22.4 KB
/
MIL_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
"""
MIL Testing Script ver: Jun 5th 21:00
"""
from __future__ import print_function, division
import json
import time
import argparse
from tensorboardX import SummaryWriter
from utils.visual_usage import *
from utils.tools import del_file
from MIL.MIL_model import *
from MIL.MIL_structure import *
def test_model(model, shuffle_patch_distributer, fixed_patch_distributer, test_dataloader, MIL_criterion, CLS_criterion,
class_names, test_dataset_size, edge_size=384, CLS_MIL=True, model_idx=None, test_model_idx=None,
check_minibatch=100, head_balance=(1., 1., 1.), device=None, draw_path='../runs',
enable_attention_check=False, enable_visualize_check=False, shuffle_attention_check=False,
MIL_Stripe=False, writer=None):
if shuffle_patch_distributer is None:
shuffle_MIL = False
else:
shuffle_MIL = True
# scheduler is an LR scheduler object from torch.optim.lr_scheduler.
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
since = time.time()
print('Epoch: Test')
print('-' * 10)
phase = 'test'
index = 0
model_time = time.time()
# initiate the empty json dict
json_log = {'test': {}}
# initiate the empty log dict
log_dict = {}
for cls_idx in range(len(class_names)):
log_dict[class_names[cls_idx]] = {'tp': 0.0, 'tn': 0.0, 'fp': 0.0, 'fn': 0.0}
model.eval() # Set model to evaluate mode
# criterias, initially empty
running_loss = 0.0
log_running_loss = 0.0
running_corrects = 0
# Iterate over data.
for patch_image, patch_labels, labels in test_dataloader: # use different dataloder in different phase
# get datas
patch_image = patch_image.to(device)
patch_labels = patch_labels.to(device)
labels = labels.to(device)
# MIL-SI forward with 2-step(shuffle step + non-shuffle step)
if not MIL_Stripe:
# get bag data from the distributers
if shuffle_MIL:
MIL_bag_image, MIL_bag_labels = shuffle_patch_distributer(patch_image, patch_labels)
CLS_bag_image, CLS_bag_labels, labels = fixed_patch_distributer(patch_image, patch_labels, labels)
# zero the parameter gradients only need in training
# optimizer.zero_grad()
# non-shuffle step: train both CLS_head and MIL_head with non-shuffled patches
# CLS_head for CLS task
bag_labels, outputs = model(CLS_bag_image, True)
_, preds = torch.max(outputs, 1)
CLS_loss = CLS_criterion(outputs, labels)
if CLS_MIL: # MIL_head for soft_label on the non-shuffled patches
CLS_MIL_loss = MIL_criterion(bag_labels, CLS_bag_labels)
# shuffle step: train MIL_head with shuffled patches
if shuffle_MIL:
bag_labels = model(MIL_bag_image)
MIL_loss = MIL_criterion(bag_labels, MIL_bag_labels)
# compose loss for iteration
# head_balance = (CLS_weight, CLS_MIL_weight, MIL_weight)
if shuffle_MIL and CLS_MIL:
loss = head_balance[0] * CLS_loss \
+ head_balance[1] * CLS_MIL_loss \
+ head_balance[2] * MIL_loss # todo 或许设置成对抗的loss组合方式?
elif not shuffle_MIL and CLS_MIL:
loss = head_balance[0] * CLS_loss + head_balance[1] * CLS_MIL_loss
elif shuffle_MIL and not CLS_MIL:
loss = head_balance[0] * CLS_loss \
+ head_balance[2] * MIL_loss # todo 或许设置成对抗的loss组合方式?
else:
loss = CLS_loss
else:
CLS_bag_image, CLS_bag_labels, labels = fixed_patch_distributer(patch_image, patch_labels, labels)
if shuffle_attention_check:
if shuffle_MIL:
MIL_bag_image, MIL_bag_labels = shuffle_patch_distributer(patch_image, patch_labels)
else:
print('no MIL_patch_distributer -> no shuffle_attention_check')
# zero the parameter gradients only need in training
# optimizer.zero_grad()
# forward
outputs = model(CLS_bag_image)
_, preds = torch.max(outputs, 1)
loss = CLS_criterion(outputs, labels)
# log criterias: update
log_running_loss += loss.item()
running_loss += loss.item() * patch_image.size(0)
running_corrects += torch.sum(preds == labels.data)
# Compute recision and recall for each class.
for cls_idx in range(len(class_names)):
# NOTICE remember to put tensor back to cpu
tp = np.dot((labels.cpu().data == cls_idx).numpy().astype(int),
(preds == cls_idx).cpu().numpy().astype(int))
tn = np.dot((labels.cpu().data != cls_idx).numpy().astype(int),
(preds != cls_idx).cpu().numpy().astype(int))
fp = np.sum((preds == cls_idx).cpu().numpy()) - tp
fn = np.sum((labels.cpu().data == cls_idx).numpy()) - tp
# log_dict[cls_idx] = {'tp': 0, 'tn': 0, 'fp': 0, 'fn': 0}
log_dict[class_names[cls_idx]]['tp'] += tp
log_dict[class_names[cls_idx]]['tn'] += tn
log_dict[class_names[cls_idx]]['fp'] += fp
log_dict[class_names[cls_idx]]['fn'] += fn
# attach the records to the tensorboard backend
if writer is not None:
# ...log the running loss
writer.add_scalar(phase + ' minibatch loss',
float(loss.item()),
index)
writer.add_scalar(phase + ' minibatch ACC',
float(torch.sum(preds == labels.data) / patch_image.size(0)),
index)
# at the checking time now
if index % check_minibatch == check_minibatch - 1:
model_time = time.time() - model_time
check_index = index // check_minibatch + 1
epoch_idx = 'test'
print('Epoch:', epoch_idx, ' ', phase, 'index of ' + str(check_minibatch) + ' minibatch:',
check_index, ' time used:', model_time)
print('minibatch AVG loss:', float(log_running_loss) / check_minibatch)
# how many image u want to check, should SMALLER THAN the batchsize
if enable_attention_check:
try:
if not MIL_Stripe:
check_SAA(CLS_bag_image, labels, model, model_idx, edge_size, class_names, model_type='MIL',
num_images=1, pic_name='GradCAM_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
else:
check_SAA(CLS_bag_image, labels, model, model_idx, edge_size, class_names, model_type='MIL',
num_images=1, pic_name='Stripe_GradCAM_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
except:
print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
else:
pass
if shuffle_attention_check and shuffle_MIL:
if len(labels) > 1: # batch size > 1
check_labels = MIL_bag_labels # size of [B, K+1]
else:
check_labels = labels # a long tensor size of the batch, each label is a catalog idx
try:
if not MIL_Stripe:
check_SAA(MIL_bag_image, check_labels, model, model_idx, edge_size, class_names,
model_type='MIL', num_images=1,
pic_name='shuffle_GradCAM_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, unknown_GT=True, writer=writer)
else:
check_SAA(MIL_bag_image, check_labels, model, model_idx, edge_size, class_names,
model_type='MIL', num_images=1,
pic_name='shuffle_Stripe_GradCAM_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, unknown_GT=True, writer=writer)
except:
print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
else:
pass
if enable_visualize_check:
visualize_check(CLS_bag_image, labels, model, class_names, num_images=3,
pic_name='Visual_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
model_time = time.time()
log_running_loss = 0.0
index += 1
# json log: update
json_log['test'][phase] = log_dict
# log criterias: print
epoch_loss = running_loss / test_dataset_size
epoch_acc = running_corrects.double() / test_dataset_size * 100
print('\nEpoch: {} \nLoss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
for cls_idx in range(len(class_names)):
# calculating the confusion matrix
tp = log_dict[class_names[cls_idx]]['tp']
tn = log_dict[class_names[cls_idx]]['tn']
fp = log_dict[class_names[cls_idx]]['fp']
fn = log_dict[class_names[cls_idx]]['fn']
tp_plus_fp = tp + fp
tp_plus_fn = tp + fn
fp_plus_tn = fp + tn
fn_plus_tn = fn + tn
# precision
if tp_plus_fp == 0:
precision = 0
else:
precision = float(tp) / tp_plus_fp * 100
# recall
if tp_plus_fn == 0:
recall = 0
else:
recall = float(tp) / tp_plus_fn * 100
# TPR (sensitivity)
TPR = recall
# TNR (specificity)
# FPR
if fp_plus_tn == 0:
TNR = 0
FPR = 0
else:
TNR = tn / fp_plus_tn * 100
FPR = fp / fp_plus_tn * 100
# NPV
if fn_plus_tn == 0:
NPV = 0
else:
NPV = tn / fn_plus_tn * 100
print('{} precision: {:.4f} recall: {:.4f}'.format(class_names[cls_idx], precision, recall))
print('{} sensitivity: {:.4f} specificity: {:.4f}'.format(class_names[cls_idx], TPR, TNR))
print('{} FPR: {:.4f} NPV: {:.4f}'.format(class_names[cls_idx], FPR, NPV))
print('{} TP: {}'.format(class_names[cls_idx], tp))
print('{} TN: {}'.format(class_names[cls_idx], tn))
print('{} FP: {}'.format(class_names[cls_idx], fp))
print('{} FN: {}'.format(class_names[cls_idx], fn))
print('\n')
time_elapsed = time.time() - since
print('Testing complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
# attach the records to the tensorboard backend
if writer is not None:
writer.close()
# save json_log indent=2 for better view
json.dump(json_log, open(os.path.join(draw_path, test_model_idx + '_log.json'), 'w'), ensure_ascii=False, indent=2)
return model
def main(args):
if args.paint:
# use Agg kernal, not painting in the front-desk
import matplotlib
matplotlib.use('Agg')
gpu_idx = args.gpu_idx # GPU idx start with0, -1 to use multipel GPU
enable_notify = args.enable_notify # False
enable_tensorboard = args.enable_tensorboard # False
enable_attention_check = args.enable_attention_check # False
enable_visualize_check = args.enable_visualize_check # False
shuffle_attention_check = args.shuffle_attention_check # False
model_idx = args.model_idx # the model we are going to use. by the format of Model_size_other_info
# shuffle_dataloader
shuffle_dataloader = True if args.shuffle_dataloader else False # False
# shuffle MIL approach
shuffle_MIL = False if args.shuffle_MIL_off else True # True
# CLS step MIL
CLS_MIL = False if args.CLS_MIL_off else True # True
MIL_Stripe = args.MIL_Stripe # remove MIL head and analysis the CLS branch
# fixme why when MIL head is used, CAM is wrong? Youdan Feng: ..
if not MIL_Stripe:
enable_attention_check = False
shuffle_attention_check = False
# PATH info
draw_root = args.draw_root
model_path = args.model_path
dataroot = args.dataroot
data_augmentation_mode = args.data_augmentation_mode # 0
# image size and patch_size for the input MIL image
edge_size = args.edge_size # 224 384 1000
patch_size = args.patch_size
batch_size = args.batch_size # GPU memory cost: colab 4 gpu server 8
head_balance = (1., 1. * args.CLS_MIL_head_weight, 1. * args.MIL_head_weight)
# skip minibatch
check_minibatch = args.check_minibatch if args.check_minibatch is not None else 80 // batch_size
# Format experiment record name
if shuffle_attention_check:
if not MIL_Stripe:
test_model_idx = 'shuffle_attention_check_MIL_' + model_idx
else:
test_model_idx = 'shuffle_attention_check_MIL_Stripe_' + model_idx
else:
if not MIL_Stripe:
test_model_idx = 'MIL_' + model_idx
else:
test_model_idx = 'MIL_Stripe_' + model_idx
if shuffle_dataloader:
test_model_idx += '_shuffle_dataloader'
test_model_idx += '_b_' + str(batch_size) + '_test'
# PATH
draw_path = os.path.join(draw_root, test_model_idx)
save_model_path = os.path.join(model_path, 'MIL_' + model_idx + '.pth')
# choose the test dataset
test_dataroot = os.path.join(dataroot, 'test')
if os.path.exists(draw_path):
del_file(draw_path) # clear the output folder, NOTICE this may be DANGEROUS
else:
os.makedirs(draw_path)
# start tensorboard backend
if enable_tensorboard:
writer = SummaryWriter(draw_path)
else:
writer = None
print("*********************************{}*************************************".format('setting'))
print(args)
# device
if gpu_idx == -1: # use all cards
if torch.cuda.device_count() > 1:
print("Use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
gpu_use = gpu_idx
else:
print('we dont have more GPU idx here, try to use gpu_idx=0')
try:
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # setting k for: only card idx k is sighted for this code
gpu_use = 0
except:
print("GPU distributing ERRO occur use CPU instead")
raise
else:
# Decide which device we want to run on
try:
# setting k for: only card idx k is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_idx)
gpu_use = gpu_idx
except:
print('we dont have that GPU idx here, try to use gpu_idx=0')
try:
# setting 0 for: only card idx 0 is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
gpu_use = 0
except:
print("GPU distributing ERRO occur use CPU instead")
raise
print('GPU:', gpu_use)
# device enviorment
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# test_dataset and its info
test_dataset = MILDataset(test_dataroot, mode='val', data_augmentation_mode=data_augmentation_mode,
suffix='.jpg', edge_size=edge_size, patch_size=patch_size)
class_names = test_dataset.class_names
test_dataset_size = len(test_dataset)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=shuffle_dataloader,
num_workers=1)
if enable_notify: # use notifyemail to send the record to somewhere
import notifyemail as notify
notify.Reboost(mail_host='smtp.163.com', mail_user='[email protected]', mail_pass='xxxx',
default_reciving_list=['[email protected]'], # change here if u want to use notify
log_root_path='log', max_log_cnt=5)
if enable_tensorboard:
notify.add_text('testing model_idx: ' + str(model_idx) + '.update to the tensorboard')
else:
notify.add_text('testing model_idx: ' + str(model_idx) + '.not update to the tensorboard')
notify.add_text(' ')
notify.add_text('GPU use: ' + str(gpu_use))
notify.add_text(' ')
notify.add_text('cls number ' + str(len(class_names)))
notify.add_text('edge size ' + str(edge_size))
notify.add_text('batch_size ' + str(batch_size))
notify.add_text('MIL_patch_size ' + str(patch_size))
notify.send_log()
# 2-step data distributers
if shuffle_MIL:
# shuffle step data distributer
shuffle_patch_distributer = shuffle_distributer(edge_size, patch_size, device=device)
else:
# set the shuffle step data distributer to None
shuffle_patch_distributer = None
# non-shuffle step data distributer
fixed_patch_distributer = non_shuffle_distributer(edge_size, patch_size, device=device)
# model
model = build_MIL_model(model_idx, edge_size, pretrained_backbone=False, num_classes=len(class_names))
# get Pre_Trained model if required
try:
model.load_state_dict(torch.load(save_model_path))
print("model loaded")
if MIL_Stripe:
model = model.Stripe()
print("model :", model_idx)
except:
try:
model = nn.DataParallel(model)
model.load_state_dict(torch.load(save_model_path), False)
if MIL_Stripe:
model = model.Stripe()
print("DataParallel model loaded")
print("model :", model_idx)
except:
print("model loading erro!!")
return -1
# put on multi-gpu
if gpu_use == -1:
model = nn.DataParallel(model)
model.to(device)
# criterion setting
MIL_criterion = torch.nn.L1Loss(size_average=None, reduce=None) # todo find better loss, maybe smoothl1loss?
CLS_criterion = nn.CrossEntropyLoss()
test_model(model, shuffle_patch_distributer, fixed_patch_distributer, test_dataloader, MIL_criterion, CLS_criterion,
class_names, test_dataset_size, edge_size=edge_size, CLS_MIL=CLS_MIL, model_idx=model_idx,
test_model_idx=test_model_idx, check_minibatch=check_minibatch, head_balance=head_balance,
device=device, draw_path=draw_path, enable_attention_check=enable_attention_check,
enable_visualize_check=enable_visualize_check, shuffle_attention_check=shuffle_attention_check,
MIL_Stripe=MIL_Stripe, writer=writer)
def get_args_parser():
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
# Model Name or index
parser.add_argument('--model_idx', default='ViT_384_401_PT_lf05_b4_ROSE_MIL', type=str, help='Model Name or index')
# shuffle_MIL, set --shuffle_MIL_off to use only the non-shuffle step to train 2-head, by default use both steps
parser.add_argument('--shuffle_MIL_off', action='store_true', help='disable shuffle MIL training')
# no-shuffle step (CLS step) MIL head, set --CLS_MIL_off to use only CLS head in the non-shuffle step
parser.add_argument('--CLS_MIL_off', action='store_true', help='disable CLS_MIL training')
# shuffle_dataloader
parser.add_argument('--shuffle_dataloader', action='store_true', help='shuffle Test dataset')
# MIL Stripe
parser.add_argument('--MIL_Stripe', action='store_true', help='MIL_Stripe')
# Trained models
# '/home/MIL_Experiment/saved_models/PC_Hybrid2_384_PreTrain_000.pth'
parser.add_argument('--Pre_Trained_model_path', default=None, type=str,
help='Finetuning a trained model in this dataset')
# Enviroment parameters
parser.add_argument('--gpu_idx', default=0, type=int,
help='use a single GPU with its index, -1 to use multiple GPU')
# Path parameters
parser.add_argument('--dataroot', default='/data/MIL_Experiment/dataset/ROSE_MIL',
help='path to dataset')
parser.add_argument('--model_path', default='/home/MIL_Experiment/saved_models',
help='path to state-dicts of the saved models')
parser.add_argument('--draw_root', default='/home/MIL_Experiment/runs',
help='path to draw and save tensorboard output')
# Data flow parameters
parser.add_argument('--data_augmentation_mode', default=0, type=int, help='data_augmentation_mode')
# Help tool parameters
parser.add_argument('--paint', action='store_false', help='paint in front desk') # matplotlib.use('Agg')
parser.add_argument('--enable_notify', action='store_true', help='enable notify to send email')
# check tool parameters
parser.add_argument('--enable_tensorboard', action='store_true', help='enable tensorboard to save status')
parser.add_argument('--enable_attention_check', action='store_true', help='check and save attention map')
parser.add_argument('--enable_visualize_check', action='store_true', help='check and save pics')
parser.add_argument('--shuffle_attention_check', action='store_true',
help='check and save attention map on shuffle images')
# Dataset based parameters
parser.add_argument('--edge_size', default=384, type=int, help='edge size of input image') # 224 256 384 1000
# Training seting parameters
parser.add_argument('--batch_size', default=1, type=int, help='Testing batch_size default 1')
# MIL seting parameters
parser.add_argument('--patch_size', default=32, type=int, help='patch size to split image') # 16/32/48/64/96/128
# check_minibatch for painting pics
parser.add_argument('--check_minibatch', default=None, type=int, help='check batch_size')
# head_balance weight
parser.add_argument('--CLS_MIL_head_weight', default=1., type=float,
help='balance weight for MIL_head in non-shuffle step (CLS step)')
parser.add_argument('--MIL_head_weight', default=1., type=float,
help='balance weight for MIL_head in shuffle step (MIL step)')
return parser
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
main(args)