_ _______ ______
____ __ ___ / | / / ___// ____/
/ __ \/ / __ \/ |/ /\__ \/ __/
/ /_/ / / / / / /| /___/ / /___
/ .___/_/_/ /_/_/ |_//____/_____/
/_/
$ python -m venv .venv
$ .\.activate.ps1
$ python -m venv .venv
$ source ./venv/bin/activate
$ python -m pip install --upgrade pip
$ python -m pip install wheel
$ python -m pip install torch --index-url https://download.pytorch.org/whl/cu124
$ python -m pip install -r requirements.txt
usage: nse [-h] -E {empty,step,slalom,block,slit,cylinder,wing} [--inlet <u>] [--nu <nu>] [--rho <rho>] [--id <id>] [-N <train>] [-L <layers>] [-D {cpu,cuda}] [--supervised] [--dry] [-P] [-F] [-G] [-R]
options:
-h, --help show this help message and exit
-L <layers> size of layers seperated by colon (default: 100:100:100)
initialization:
-E {empty,step,slalom,block,slit,cylinder,wing}
choose experiment
--inlet <u> set intake (default: 1.0)
--nu <nu> set viscosity (default: 0.1)
--rho <rho> set density (default: 1.0)
optimization:
--id <id> identifier / prefix for output directory (default: timestamp, example: 2024-10-28_09-26-09)
-N <train> number of optimization steps (default: 0)
-D {cpu,cuda} device used for training (default: cpu)
--supervised set training method to supervised approach (requires -F)
--dry dry run
output:
-P plot NSE in output directory
-F initialize OpenFOAM experiment
-G grade prediction (requires -F and -P)
-R plot NSE with high resolution grid in output directory (requires -P)
$ python -m src.nse -E step --inlet 5 --nu .08 -N 100
$ python -m src.nse -E wing --id wing -L 100:100:100:100 --inlet 1 --nu .01 -D cuda -PRFGN 30000
$ python -m src.nse -E block