Skip to content

Commit

Permalink
Fold 64-bit int operations.
Browse files Browse the repository at this point in the history
Adds folding rules that will fold basic artimetic for signed and
unsigned integers of all sizes, including 64-bit.
  • Loading branch information
s-perron committed Feb 6, 2024
1 parent bc10749 commit a2af1d8
Show file tree
Hide file tree
Showing 2 changed files with 363 additions and 22 deletions.
152 changes: 151 additions & 1 deletion source/opt/const_folding_rules.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -676,7 +676,6 @@ ConstantFoldingRule FoldUnaryOp(UnaryScalarFoldingRule scalar_rule) {
return [scalar_rule](IRContext* context, Instruction* inst,
const std::vector<const analysis::Constant*>& constants)
-> const analysis::Constant* {

analysis::ConstantManager* const_mgr = context->get_constant_mgr();
analysis::TypeManager* type_mgr = context->get_type_mgr();
const analysis::Type* result_type = type_mgr->GetType(inst->type_id());
Expand Down Expand Up @@ -716,6 +715,63 @@ ConstantFoldingRule FoldUnaryOp(UnaryScalarFoldingRule scalar_rule) {
};
}

// Returns a |ConstantFoldingRule| that folds binary scalar ops
// using |scalar_rule| and unary vectors ops by applying
// |scalar_rule| to the elements of the vector. The |ConstantFoldingRule|
// that is returned assumes that |constants| contains 2 entries. If they are
// not |nullptr|, then their type is either |Float| or |Integer| or a |Vector|
// whose element type is |Float| or |Integer|.
ConstantFoldingRule FoldBinaryOp(BinaryScalarFoldingRule scalar_rule) {
return [scalar_rule](IRContext* context, Instruction* inst,
const std::vector<const analysis::Constant*>& constants)
-> const analysis::Constant* {
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
analysis::TypeManager* type_mgr = context->get_type_mgr();
const analysis::Type* result_type = type_mgr->GetType(inst->type_id());
const analysis::Vector* vector_type = result_type->AsVector();

const analysis::Constant* arg1 =
(inst->opcode() == spv::Op::OpExtInst) ? constants[1] : constants[0];
const analysis::Constant* arg2 =
(inst->opcode() == spv::Op::OpExtInst) ? constants[2] : constants[1];

if (arg1 == nullptr) {
return nullptr;
}
if (arg2 == nullptr) {
return nullptr;
}

if (vector_type != nullptr) {
std::vector<const analysis::Constant*> a_components;
std::vector<const analysis::Constant*> b_components;
std::vector<const analysis::Constant*> results_components;

a_components = arg1->GetVectorComponents(const_mgr);
b_components = arg2->GetVectorComponents(const_mgr);

// Fold each component of the vector.
for (uint32_t i = 0; i < a_components.size(); ++i) {
results_components.push_back(scalar_rule(vector_type->element_type(),
a_components[i],
b_components[i], const_mgr));
if (results_components[i] == nullptr) {
return nullptr;
}
}

// Build the constant object and return it.
std::vector<uint32_t> ids;
for (const analysis::Constant* member : results_components) {
ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id());
}
return const_mgr->GetConstant(vector_type, ids);
} else {
return scalar_rule(result_type, arg1, arg2, const_mgr);
}
};
}

// Returns a |ConstantFoldingRule| that folds unary floating point scalar ops
// using |scalar_rule| and unary float point vectors ops by applying
// |scalar_rule| to the elements of the vector. The |ConstantFoldingRule|
Expand Down Expand Up @@ -1587,6 +1643,60 @@ BinaryScalarFoldingRule FoldFTranscendentalBinary(double (*fp)(double,
return nullptr;
};
}

template <bool IsSigned>
BinaryScalarFoldingRule FoldBinaryUnsignedIntegerOperation(
uint64_t (*op)(uint64_t, uint64_t)) {
return
[op](const analysis::Type* result_type, const analysis::Constant* a,
const analysis::Constant* b,
analysis::ConstantManager* const_mgr) -> const analysis::Constant* {
assert(result_type != nullptr && a != nullptr);
const analysis::Integer* integer_type = a->type()->AsInteger();
assert(integer_type != nullptr);
assert(integer_type == result_type->AsInteger());
assert(integer_type == b->type()->AsInteger());

// In SPIR-V, the signedness of the operands is determined by the
// opcode, and not by the type of the operands. This is why we use the
// template argument to determine how to interpret the operands.
uint64_t ia =
(IsSigned ? a->GetSignExtendedValue() : a->GetZeroExtendedValue());
uint64_t ib =
(IsSigned ? b->GetSignExtendedValue() : b->GetZeroExtendedValue());
uint64_t result = op(ia, ib);

std::vector<uint32_t> words;
if (integer_type->width() == 64) {
// In the 64-bit case, two words are needed to represent the value.
words = {static_cast<uint32_t>(result),
static_cast<uint32_t>(result >> 32)};
} else {
// In all other cases, only a single word is needed.
assert(integer_type->width() <= 32);

uint64_t mask_for_last_bit = 1ull << (integer_type->width() - 1);
uint64_t significant_bits = (mask_for_last_bit << 1) - 1ull;
if (integer_type->IsSigned()) {
// Sign-extend the most significant bit.
if (result & mask_for_last_bit) {
// Set upper bits to 1
result |= ~significant_bits;
} else {
// Clear the upper bits
result &= significant_bits;
}
} else {
// Mask any bits largest than the width.
result &= (1ull << integer_type->width()) - 1ull;
}

words = {static_cast<uint32_t>(result)};
}
return const_mgr->GetConstant(result_type, words);
};
}

} // namespace

void ConstantFoldingRules::AddFoldingRules() {
Expand Down Expand Up @@ -1662,6 +1772,46 @@ void ConstantFoldingRules::AddFoldingRules() {
rules_[spv::Op::OpSNegate].push_back(FoldSNegate());
rules_[spv::Op::OpQuantizeToF16].push_back(FoldQuantizeToF16());

rules_[spv::Op::OpIAdd].push_back(
FoldBinaryOp(FoldBinaryUnsignedIntegerOperation<false>(
[](uint64_t a, uint64_t b) { return a + b; })));
rules_[spv::Op::OpISub].push_back(
FoldBinaryOp(FoldBinaryUnsignedIntegerOperation<false>(
[](uint64_t a, uint64_t b) { return a - b; })));
rules_[spv::Op::OpIMul].push_back(
FoldBinaryOp(FoldBinaryUnsignedIntegerOperation<false>(
[](uint64_t a, uint64_t b) { return a * b; })));
rules_[spv::Op::OpUDiv].push_back(
FoldBinaryOp(FoldBinaryUnsignedIntegerOperation<false>(
[](uint64_t a, uint64_t b) { return (b != 0 ? a / b : 0); })));
rules_[spv::Op::OpSDiv].push_back(FoldBinaryOp(
FoldBinaryUnsignedIntegerOperation<true>([](uint64_t a, uint64_t b) {
return (b != 0 ? static_cast<uint64_t>(static_cast<int64_t>(a) /
static_cast<int64_t>(b))
: 0);
})));
rules_[spv::Op::OpUMod].push_back(
FoldBinaryOp(FoldBinaryUnsignedIntegerOperation<false>(
[](uint64_t a, uint64_t b) { return (b != 0 ? a % b : 0); })));

rules_[spv::Op::OpSRem].push_back(FoldBinaryOp(
FoldBinaryUnsignedIntegerOperation<true>([](uint64_t a, uint64_t b) {
return (b != 0 ? static_cast<uint64_t>(static_cast<int64_t>(a) %
static_cast<int64_t>(b))
: 0);
})));

rules_[spv::Op::OpSMod].push_back(FoldBinaryOp(
FoldBinaryUnsignedIntegerOperation<true>([](uint64_t a, uint64_t b) {
if (b == 0) return static_cast<uint64_t>(0ull);

int64_t signed_a = static_cast<int64_t>(a);
int64_t signed_b = static_cast<int64_t>(b);
int64_t result = signed_a % signed_b;
if ((signed_b < 0) != (result < 0)) result += signed_b;
return static_cast<uint64_t>(result);
})));

// Add rules for GLSLstd450
FeatureManager* feature_manager = context_->get_feature_mgr();
uint32_t ext_inst_glslstd450_id =
Expand Down
Loading

0 comments on commit a2af1d8

Please sign in to comment.