-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
single config file for each experiment
- Loading branch information
1 parent
bb46dc7
commit 3551d74
Showing
7 changed files
with
648 additions
and
0 deletions.
There are no files selected for viewing
63 changes: 63 additions & 0 deletions
63
...peech_100_ctc/fairseq_finetuning/ctc_standalone/sisyphus_configs/config_negatives_hard.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
from sisyphus import tk | ||
import os | ||
|
||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_100_ctc.fairseq_finetuning.ctc_standalone.experiments.ctc_phon.baseline import eow_phon_ls100_ctc_base | ||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_960_pretraining.wav2vec2.config_02_fairseq_phoneme import \ | ||
get_fairseq_root, \ | ||
run_fairseq_pretraining | ||
|
||
|
||
# pretraining | ||
other_target_pretrain_job = run_fairseq_pretraining( | ||
exp_name="monophone_negatives_other_target_v1", | ||
commit="1397363c5c0e3c4e3ab620be562730399c852493", | ||
python_exe_hash_overwrite="itc_python_launcher_py310_torch", | ||
negative_sampling_strategy="other_target", | ||
) | ||
|
||
|
||
neg_hard_pretrain_job = run_fairseq_pretraining( | ||
exp_name="monophone_negatives_hard_v1", | ||
commit="be51394d876428ad531e0786d80de43d6a8818af", | ||
python_exe_hash_overwrite="itc_python_launcher_py310_torch", | ||
negative_sampling_strategy="hard_negatives", | ||
) | ||
|
||
neg_hard_pretrain_jobs = dict() | ||
neg_hard_pretrain_jobs[0] = neg_hard_pretrain_job | ||
for start_cp in [50, 100, 150, 200]: | ||
neg_hard_pretrain_jobs[start_cp] = run_fairseq_pretraining( | ||
exp_name=f"monophone_negatives_hard_after_{start_cp}ep_other_v1", | ||
commit="be51394d876428ad531e0786d80de43d6a8818af", | ||
python_exe_hash_overwrite="itc_python_launcher_py310_torch", | ||
checkpoint=other_target_pretrain_job.out_models[start_cp].model, | ||
negative_sampling_strategy="hard_negatives", | ||
) | ||
|
||
# fairseq root | ||
fairseq_root = get_fairseq_root(fairseq_exe=tk.Path("/usr/bin/python3")) | ||
|
||
# Finetuning | ||
base_model_conf = { | ||
"_name": "wav2vec_ctc", | ||
"apply_mask": True, | ||
"mask_prob": 0.65, | ||
"mask_channel_prob": 0.5, | ||
"mask_channel_length": 64, | ||
"layerdrop": 0.1, | ||
"activation_dropout": 0.1, | ||
"feature_grad_mult": 0.0, | ||
"freeze_finetune_updates": 10000, # was 0 in fairseq config | ||
} | ||
|
||
for start_cp in [50, 100, 150, 200]: | ||
for additional_cp in range(50, 600+1-start_cp, 50): | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_hard_pretrain_jobs[start_cp].out_models[start_cp + additional_cp].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join("w2v_negatives_hard", f"other_{start_cp}_hard_{additional_cp}"), | ||
fairseq_root=fairseq_root, | ||
) |
172 changes: 172 additions & 0 deletions
172
...eech_100_ctc/fairseq_finetuning/ctc_standalone/sisyphus_configs/config_negatives_other.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
from sisyphus import tk | ||
import os | ||
|
||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_100_ctc.fairseq_finetuning.ctc_standalone.experiments.ctc_phon.baseline import eow_phon_ls100_ctc_base | ||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_960_pretraining.wav2vec2.config_02_fairseq_phoneme import \ | ||
get_fairseq_root, \ | ||
run_fairseq_pretraining | ||
|
||
|
||
# pretraining | ||
neg_other_pretrain_job = run_fairseq_pretraining( | ||
exp_name="monophone_negatives_other_target_v1", | ||
commit="1397363c5c0e3c4e3ab620be562730399c852493", | ||
python_exe_hash_overwrite="itc_python_launcher_py310_torch", | ||
negative_sampling_strategy="other_target", | ||
) | ||
|
||
# fairseq root | ||
fairseq_root = get_fairseq_root(fairseq_exe=tk.Path("/usr/bin/python3")) | ||
|
||
# Finetuning | ||
|
||
base_model_conf = { | ||
"_name": "wav2vec_ctc", | ||
"apply_mask": True, | ||
"mask_prob": 0.65, | ||
"mask_channel_prob": 0.5, | ||
"mask_channel_length": 64, | ||
"layerdrop": 0.1, | ||
"activation_dropout": 0.1, | ||
"feature_grad_mult": 0.0, | ||
"freeze_finetune_updates": 10000, # was 0 in fairseq config | ||
} | ||
|
||
checkpoints = [100, 200, 300, 400, 500, 600] | ||
for checkpoint in checkpoints: | ||
# negative sampling | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[checkpoint].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join("w2v_neg_sampling_other_target", f"checkpoint_{checkpoint}"), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
|
||
# finetuning experiments only for the last checkpoint | ||
CHECKPOINT = 600 | ||
# random vs phoneme mask in finetuning | ||
model_conf_w2v = base_model_conf.copy() # base model, no need to set `mask_strategy` and `mask_length` | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"random_spec", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
model_conf_w2v["mask_strategy"] = "phoneme" | ||
model_conf_w2v["mask_length"] = 1 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"phoneme_spec", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
# phoneme mask lengths in finetuning | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
model_conf_w2v["mask_strategy"] = "phoneme" | ||
model_conf_w2v["mask_length"] = 1 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"1_phoneme_spec", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
model_conf_w2v["mask_strategy"] = "phoneme" | ||
model_conf_w2v["mask_length"] = 2 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"2_phoneme_spec", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
model_conf_w2v["mask_strategy"] = "phoneme" | ||
model_conf_w2v["mask_length"] = 1 | ||
model_conf_w2v["mask_other"] = 1 | ||
model_conf_w2v["mask_selection"] = "uniform" | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"1_2_phoneme_spec", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
# mask probability in finetuning | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
model_conf_w2v["mask_prob"] = 0.35 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"0_35_phoneme_mask_prob", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
model_conf_w2v["mask_prob"] = 0.5 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"0_5_phoneme_mask_prob", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
model_conf_w2v["mask_prob"] = 0.65 # base model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"0_65_phoneme_mask_prob", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[CHECKPOINT].model | ||
model_conf_w2v["mask_prob"] = 0.8 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"0_8_phoneme_mask_prob", | ||
f"checkpoint_{CHECKPOINT}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) |
Oops, something went wrong.