Skip to content

Commit

Permalink
feat: integration on pinecone hosted rerankers (#17192)
Browse files Browse the repository at this point in the history
  • Loading branch information
jzhao62 authored Dec 9, 2024
1 parent 10acb92 commit 7b2fd72
Show file tree
Hide file tree
Showing 11 changed files with 466 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
llama_index/_static
.DS_Store
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
bin/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
etc/
include/
lib/
lib64/
parts/
sdist/
share/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
.ruff_cache

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints
notebooks/

# IPython
profile_default/
ipython_config.py

# pyenv
.python-version

# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock

# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/

# Celery stuff
celerybeat-schedule
celerybeat.pid

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
pyvenv.cfg

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/
.dmypy.json
dmypy.json

# Pyre type checker
.pyre/

# Jetbrains
.idea
modules/
*.swp

# VsCode
.vscode

# pipenv
Pipfile
Pipfile.lock

# pyright
pyrightconfig.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
poetry_requirements(
name = "poetry",
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
GIT_ROOT ?= $(shell git rev-parse --show-toplevel)

help: ## Show all Makefile targets.
@grep -E '^[a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | awk 'BEGIN {FS = ":.*?## "}; {printf "\033[33m%-30s\033[0m %s\n", $$1, $$2}'

format: ## Run code autoformatters (black).
pre-commit install
git ls-files | xargs pre-commit run black --files

lint: ## Run linters: pre-commit (black, ruff, codespell) and mypy
pre-commit install && git ls-files | xargs pre-commit run --show-diff-on-failure --files

test: ## Run tests via pytest.
pytest tests

watch-docs: ## Build and watch documentation.
sphinx-autobuild docs/ docs/_build/html --open-browser --watch $(GIT_ROOT)/llama_index/
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# LLamaIndex node postprocessing reranker using pinecone hosted models

- use rerank models with the pinecone managed vector service to rerank the search results
- available rerank models from [pinecone](https://app.pinecone.io/organizations/-Nn577_974iRsvC6nVxg/projects/a4fe57a4-b1cc-4a99-bf1d-c35a595cae4a/models)

```python
import os
from llama_index.core import VectorStoreIndex
from llama_index.core.schema import TextNode
from llama_index.postprocessor.pinecone_native_rerank import (
PineconeNativeRerank,
)
from llama_index.core.response.pprint_utils import pprint_response

os.environ["PINECONE_API_KEY"] = "your_pinecone_api_key"
os.environ["OPENAI_API_KEY"] = "your_openai_api_key"

txts = [
"Apple is a popular fruit known for its sweetness and crisp texture.",
"Apple is known for its innovative products like the iPhone.",
"Many people enjoy eating apples as a healthy snack.",
"Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
"An apple a day keeps the doctor away, as the saying goes.",
"apple has a lot of vitamins",
]

nodes = [TextNode(id_=f"vec{i}", text=txt) for i, txt in enumerate(txts)]

pinecone_reranker = PineconeNativeRerank(top_n=4, model="pinecone-rerank-v0")

index = VectorStoreIndex(nodes)

query_engine = index.as_query_engine(
similarity_top_k=10,
node_postprocessors=[pinecone_reranker],
)

response = query_engine.query(
"The tech company Apple is known for its innovative products like the iPhone."
)

pprint_response(response, show_source=True)
```

output

```txt
Final Response: Apple is recognized for its innovative products like
the iPhone.
______________________________________________________________________
Source Node 1/4
Node ID: vec1
Similarity: 0.9655668
Text: Apple is known for its innovative products like the iPhone.
______________________________________________________________________
Source Node 2/4
Node ID: vec3
Similarity: 0.55420566
Text: Apple Inc. has revolutionized the tech industry with its sleek
designs and user-friendly interfaces.
______________________________________________________________________
Source Node 3/4
Node ID: vec4
Similarity: 0.3172258
Text: An apple a day keeps the doctor away, as the saying goes.
______________________________________________________________________
Source Node 4/4
Node ID: vec0
Similarity: 0.25139993
Text: Apple is a popular fruit known for its sweetness and crisp
texture.
```
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
python_sources()
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from llama_index.postprocessor.pinecone_native_rerank.base import PineconeNativeRerank


__all__ = ["PineconeNativeRerank"]
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
import os
from typing import List, Optional, Literal
from llama_index.core.bridge.pydantic import Field, PrivateAttr
from llama_index.core.callbacks import CBEventType, EventPayload
from llama_index.core.instrumentation import get_dispatcher
from llama_index.core.instrumentation.events.rerank import (
ReRankEndEvent,
ReRankStartEvent,
)
from llama_index.core.postprocessor.types import BaseNodePostprocessor
from llama_index.core.schema import NodeWithScore, QueryBundle, MetadataMode

dispatcher = get_dispatcher(__name__)


# as of today 2024/12/7
# pinecone itself supports 3 rerank models out of its sdk
# https://app.pinecone.io/organizations/-Nn577_974iRsvC6nVxg/projects/a4fe57a4-b1cc-4a99-bf1d-c35a595cae4a/models
class PineconeNativeRerank(BaseNodePostprocessor):
model: Literal[
"bge-reranker-v2-m3", "cohere-rerank-3.5", "pinecone-rerank-v0"
] = Field(
description="supported Pinecone inference rerank model name",
default="bge-reranker-v2-m3",
)
top_n: int = Field(description="Top N nodes to return")

_pc: any = PrivateAttr()

def __init__(
self,
top_n: int = 2,
model: str = "bge-reranker-v2-m3",
api_key: Optional[str] = None,
):
super().__init__(top_n=top_n, model=model)
try:
api_key = api_key or os.environ["PINECONE_API_KEY"]
except IndexError:
raise ValueError(
"Must pass in pinecone api key or "
"specify via PINECONE_API_KEY environment variable "
)

try:
from pinecone import Pinecone
except ImportError:
raise ImportError(
"Cannot import pinecone package, please `pip install pinecone-client`."
)

self._pc = Pinecone(api_key=api_key)

@classmethod
def class_name(cls) -> str:
return "PineconeNativeRerank"

def _postprocess_nodes(
self,
nodes: List[NodeWithScore],
query_bundle: Optional[QueryBundle] = None,
) -> List[NodeWithScore]:
dispatcher.event(
ReRankStartEvent(
query=query_bundle, nodes=nodes, top_n=self.top_n, model_name=self.model
)
)

if query_bundle is None:
raise ValueError("Missing query bundle in extra info.")
if len(nodes) == 0:
return []

with self.callback_manager.event(
CBEventType.RERANKING,
payload={
EventPayload.NODES: nodes,
EventPayload.MODEL_NAME: self.model,
EventPayload.QUERY_STR: query_bundle.query_str,
EventPayload.TOP_K: self.top_n,
},
) as event:
texts = [
node.node.get_content(metadata_mode=MetadataMode.EMBED)
for node in nodes
]

reranked_result = self._pc.inference.rerank(
model=self.model,
top_n=self.top_n,
query=query_bundle.query_str,
documents=texts,
return_documents=True,
)
new_nodes = []
for result in reranked_result.data:
new_nodes.append(
NodeWithScore(
node=nodes[result.index].node,
score=result.score,
)
)
event.on_end(payload={EventPayload.NODES: new_nodes})
dispatcher.event(ReRankEndEvent(nodes=new_nodes))
return new_nodes
Loading

0 comments on commit 7b2fd72

Please sign in to comment.