Skip to content

Practical Deep Learning for Time Series / Sequential Data library based on fastai v2/ Pytorch

License

Notifications You must be signed in to change notification settings

reza-iranmanesh/timeseriesAI

 
 

Repository files navigation

tsai

Practical Deep Learning for Time Series / Sequential Data package built with fastai v2/ Pytorch.

tsaiis a deep learning package built on top of fastai v2 / Pytorch focused on state-of-the-art methods for time series classification and regression.

If you are looking for timeseriesAI based on fastai v1, it's been moved to timeseriesAI1.

Install

You can install the latest stable version from pip:

pip install tsai

Or you can install the bleeding edge version of this library from github by doing:

pip install git+https://github.com/timeseriesAI/timeseriesAI.git@master

In the latter case, you may also want to use install the bleeding egde fastai & fastcore libraries, in which case you need to do this:

pip install git+https://github.com/fastai/fastcore.git@master

pip install git+https://github.com/fastai/fastai2.git@master

How to get started

To get to know the tsai package, I'd suggest you start with this notebook:

01_Intro_to_Time_Series_Classification

It provides an overview of a time series classification problem using fastai v2.

If you want more details, you can get them in nbs 00 and 00a.

To use tsai in your own notebooks, the only thing you need to do after you have installed the package is to add this:

from tsai.all import *

About

Practical Deep Learning for Time Series / Sequential Data library based on fastai v2/ Pytorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.1%
  • Python 1.9%