Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updated gates #24

Merged
merged 5 commits into from
Mar 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions ProvenZk/Binary.lean
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,8 @@ protected theorem Nat.add_lt_add_of_le_of_lt {a b c d : Nat} (hle : a ≤ b) (hl
a + c < b + d :=
Nat.lt_of_le_of_lt (Nat.add_le_add_right hle _) (Nat.add_lt_add_left hlt _)

def binary_length (n : Nat) : Nat := (Nat.log 2 n).succ

namespace Fin

def msb {d:ℕ} (v : Fin (2^d.succ)): Bool := v.val ≥ 2^d
Expand Down
113 changes: 92 additions & 21 deletions ProvenZk/Gates.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,34 +4,105 @@ import ProvenZk.Binary

open BigOperators

namespace Gates
namespace GatesDef
variable {N : Nat}
def is_bool (a : ZMod N): Prop := a = 0 ∨ a = 1
def is_bool (a : ZMod N): Prop := (1-a)*a = 0
def add (a b : ZMod N): ZMod N := a + b
def mul_acc (a b c : ZMod N): ZMod N := a + (b * c)
def neg (a : ZMod N): ZMod N := a * (-1)
def sub (a b : ZMod N): ZMod N := a - b
def mul (a b : ZMod N): ZMod N := a * b
def div_unchecked [Fact (Nat.Prime N)] (a b out : ZMod N): Prop := (b ≠ 0 ∧ out = a * (1 / b)) ∨ (a = 0 ∧ b = 0 ∧ out = 0)
def div [Fact (Nat.Prime N)] (a b out : ZMod N): Prop := b ≠ 0 ∧ out = a * (1 / b)
def inv [Fact (Nat.Prime N)] (a out : ZMod N): Prop := a ≠ 0 ∧ out = 1 / a
def xor (a b out : ZMod N): Prop := is_bool a ∧ is_bool b ∧ out = a*(1-2*b)+b
def div_unchecked (a b out : ZMod N): Prop := (b ≠ 0 ∧ out*b = a) ∨ (a = 0 ∧ b = 0 ∧ out = 0)
def div (a b out : ZMod N): Prop := b ≠ 0 ∧ out*b = a
def inv (a out : ZMod N): Prop := a ≠ 0 ∧ out*a = 1
def xor (a b out : ZMod N): Prop := is_bool a ∧ is_bool b ∧ out = a+b-a*b-a*b
def or (a b out : ZMod N): Prop := is_bool a ∧ is_bool b ∧ out = a+b-a*b
def and (a b out : ZMod N): Prop := is_bool a ∧ is_bool b ∧ out = a*b
def select (b i1 i2 out : ZMod N): Prop := is_bool b ∧ ((b = 1 ∧ out = i1) ∨ (b = 0 ∧ out = i2))
def lookup (b0 b1 i0 i1 i2 i3 out : ZMod N): Prop := is_bool b0 ∧ is_bool b1 ∧ (
(b0 = 0 ∧ b1 = 0 ∧ out = i0) ∨
(b0 = 1 ∧ b1 = 0 ∧ out = i1) ∨
(b0 = 0 ∧ b1 = 1 ∧ out = i2) ∨
(b0 = 1 ∧ b1 = 1 ∧ out = i3)
)
def cmp (a b : ZMod N) (out : ZMod N): Prop := (a = b ∧ out = 0) ∨
(ZMod.val a < ZMod.val b ∧ out = -1) ∨
(ZMod.val a > ZMod.val b ∧ out = 1)
def is_zero (a out: ZMod N): Prop := (a = 0 ∧ out = 1) ∨ (a != 0 ∧ out = 0)
def select (b i1 i2 out : ZMod N): Prop := is_bool b ∧ out = i2 - b*(i2-i1)
def lookup (b0 b1 i0 i1 i2 i3 out : ZMod N): Prop :=
is_bool b0 ∧ is_bool b1 ∧
out = (i2 - i0) * b1 + i0 + (((i3 - i2 - i1 + i0) * b1 + i1 - i0) * b0)

-- In gnark 8 the number is decomposed in a binary vector with the length of the field order
-- however this doesn't guarantee that the number is unique.
def cmp_8 (a b out : ZMod N): Prop :=
Eagle941 marked this conversation as resolved.
Show resolved Hide resolved
∃z w: Fin (binary_length N), z.val % N = a.val ∧ w.val % N = b.val ∧
((z = w ∧ out = 0) ∨
(z.val < w.val ∧ out = -1) ∨
(z.val > w.val ∧ out = 1))

-- In gnark 9 the number is reduced to the smallest representation, ensuring it is unique.
def cmp_9 (a b out : ZMod N): Prop :=
(a = b ∧ out = 0) ∨
(a.val < b.val ∧ out = -1) ∨
(a.val > b.val ∧ out = 1)

def is_zero (a out: ZMod N): Prop := (a ≠ 0 ∧ out = 0) ∨ (a = 0 ∧ out = 1)
def eq (a b : ZMod N): Prop := a = b
def ne (a b : ZMod N): Prop := a ≠ b
def le (a b : ZMod N): Prop := ZMod.val a <= ZMod.val b
def to_binary (a : ZMod N) (n : Nat) (out : Vector (ZMod N) n): Prop := recover_binary_zmod' out = a ∧ is_vector_binary out
def from_binary {d} (a : Vector (ZMod N) d) (out : ZMod N): Prop := (recover_binary_zmod' a : ZMod N) = out
end Gates

def le_8 (a b : ZMod N): Prop :=
∃z w: Fin (binary_length N), z.val % N = a.val ∧ w.val % N = b.val ∧
z.val <= w.val

def le_9 (a b : ZMod N): Prop :=
a.val <= b.val

def to_binary (a : ZMod N) (d : Nat) (out : Vector (ZMod N) d): Prop :=
@recover_binary_zmod' d N out = a ∧ is_vector_binary out
def from_binary {d} (a : Vector (ZMod N) d) (out : ZMod N) : Prop :=
@recover_binary_zmod' d N a = out ∧ is_vector_binary a
end GatesDef

structure Gates_base (α : Type) : Type where
is_bool : α → Prop
add : α → α → α
mul_acc : α → α → α → α
neg : α → α
sub : α → α → α
mul : α → α → α
div_unchecked : α → α → α → Prop
div : α → α → α → Prop
inv : α → α → Prop
xor : α → α → α → Prop
or : α → α → α → Prop
and : α → α → α → Prop
select : α → α → α → α → Prop
lookup : α → α → α → α → α → α → α → Prop
cmp : α → α → α → Prop
is_zero : α → α → Prop
eq : α → α → Prop
ne : α → α → Prop
le : α → α → Prop
to_binary : α → (n : Nat) → Vector α n → Prop
from_binary : Vector α d → α → Prop

def GatesGnark8 (N : Nat) [Fact (Nat.Prime N)] : Gates_base (ZMod N) := {
is_bool := GatesDef.is_bool,
add := GatesDef.add,
mul_acc := GatesDef.mul_acc,
neg := GatesDef.neg,
sub := GatesDef.sub,
mul := GatesDef.mul,
div_unchecked := GatesDef.div_unchecked,
div := GatesDef.div,
inv := GatesDef.inv,
xor := GatesDef.xor,
or := GatesDef.or,
and := GatesDef.and,
select := GatesDef.select,
lookup := GatesDef.lookup,
cmp := GatesDef.cmp_8,
is_zero := GatesDef.is_zero,
eq := GatesDef.eq,
ne := GatesDef.ne,
le := GatesDef.le_8,
to_binary := GatesDef.to_binary,
from_binary := GatesDef.from_binary
}

def GatesGnark9 (N : Nat) [Fact (Nat.Prime N)] : Gates_base (ZMod N) := {
GatesGnark8 N with
cmp := GatesDef.cmp_9
le := GatesDef.le_9
}
81 changes: 42 additions & 39 deletions ProvenZk/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -26,95 +26,98 @@ theorem exists_eq_left₂ {pred : α → β → Prop}:
simp [and_assoc]

@[simp]
theorem is_bool_is_bit (a : ZMod n) [Fact (Nat.Prime n)]: Gates.is_bool a = is_bit a := by rfl
theorem is_bool_is_bit (a : ZMod n) [Fact (Nat.Prime n)]: GatesDef.is_bool a = is_bit a := by
simp [is_bit, GatesDef.is_bool, sub_eq_zero]
tauto

@[simp]
theorem Gates.eq_def : Gates.eq a b ↔ a = b := by simp [Gates.eq]
theorem Gates.eq_def : GatesDef.eq a b ↔ a = b := by simp [GatesDef.eq]

@[simp]
theorem Gates.sub_def {N} {a b : ZMod N} : Gates.sub a b = a - b := by simp [Gates.sub]
theorem Gates.sub_def {N} {a b : ZMod N} : GatesDef.sub a b = a - b := by simp [GatesDef.sub]

@[simp]
theorem Gates.is_zero_def {N} {a out : ZMod N} : Gates.is_zero a out ↔ out = Bool.toZMod (a = 0) := by
simp [Gates.is_zero]
theorem Gates.is_zero_def {N} {a out : ZMod N} : GatesDef.is_zero a out ↔ out = Bool.toZMod (a = 0) := by
simp [GatesDef.is_zero]
apply Iff.intro
. rintro (_ | _) <;> simp [*]
. rintro ⟨_⟩
simp [Bool.toZMod, Bool.toNat]
tauto

@[simp]
theorem Gates.select_zero {a b r : ZMod N}: Gates.select 0 a b r = (r = b) := by
simp [Gates.select]
theorem Gates.select_zero {a b r : ZMod N}: GatesDef.select 0 a b r = (r = b) := by
simp [GatesDef.select]

@[simp]
theorem Gates.select_one {a b r : ZMod N}: Gates.select 1 a b r = (r = a) := by
simp [Gates.select]
theorem Gates.select_one {a b r : ZMod N}: GatesDef.select 1 a b r = (r = a) := by
simp [GatesDef.select]

@[simp]
theorem Gates.or_zero { a r : ZMod N}: Gates.or a 0 r = (is_bit a ∧ r = a) := by
simp [Gates.or]
theorem Gates.or_zero { a r : ZMod N}: GatesDef.or a 0 r = (is_bit a ∧ r = a) := by
simp [GatesDef.or]

@[simp]
theorem Gates.zero_or { a r : ZMod N}: Gates.or 0 a r = (is_bit a ∧ r = a) := by
simp [Gates.or]
theorem Gates.zero_or { a r : ZMod N}: GatesDef.or 0 a r = (is_bit a ∧ r = a) := by
simp [GatesDef.or]

@[simp]
theorem Gates.one_or { a r : ZMod N}: Gates.or 1 a r = (is_bit a ∧ r = 1) := by
simp [Gates.or]
theorem Gates.one_or { a r : ZMod N}: GatesDef.or 1 a r = (is_bit a ∧ r = 1) := by
simp [GatesDef.or]

@[simp]
theorem Gates.or_one { a r : ZMod N}: Gates.or a 1 r = (is_bit a ∧ r = 1) := by
simp [Gates.or]
theorem Gates.or_one { a r : ZMod N}: GatesDef.or a 1 r = (is_bit a ∧ r = 1) := by
simp [GatesDef.or]

@[simp]
theorem Gates.is_bit_one_sub {a : ZMod N}: is_bit (Gates.sub 1 a) ↔ is_bit a := by
simp [Gates.sub, is_bit, sub_eq_zero]
theorem Gates.is_bit_one_sub {a : ZMod N}: is_bit (GatesDef.sub 1 a) ↔ is_bit a := by
simp [GatesDef.sub, is_bit, sub_eq_zero]
tauto

@[simp]
theorem Gates.xor_bool {N} [Fact (N>1)] {a b : Bool} {c : ZMod N} : Gates.xor a.toZMod b.toZMod c ↔ c = (a != b).toZMod := by
unfold xor
theorem Gates.xor_bool {N} [Fact (N>1)] {a b : Bool} {c : ZMod N} : GatesDef.xor a.toZMod b.toZMod c ↔ c = (a != b).toZMod := by
unfold GatesDef.xor
cases a <;> cases b <;> {
simp [is_bool, Bool.toZMod, Bool.toNat, bne]
simp [GatesDef.is_bool, Bool.toZMod, Bool.toNat, bne]
try ring_nf
}

@[simp]
theorem Gates.and_bool {N} [Fact (N>1)] {a b : Bool} {c : ZMod N} : Gates.and a.toZMod b.toZMod c ↔ c = (a && b).toZMod := by
unfold and
theorem Gates.and_bool {N} [Fact (N>1)] {a b : Bool} {c : ZMod N} : GatesDef.and a.toZMod b.toZMod c ↔ c = (a && b).toZMod := by
unfold GatesDef.and
cases a <;> cases b <;> {
simp [is_bool, Bool.toZMod, Bool.toNat]
simp [GatesDef.is_bool, Bool.toZMod, Bool.toNat]
}

@[simp]
theorem Gates.or_bool {N} [Fact (N>1)] {a b : Bool} {c : ZMod N} : Gates.or a.toZMod b.toZMod c ↔ c = (a || b).toZMod := by
unfold or
theorem Gates.or_bool {N} [Fact (N>1)] {a b : Bool} {c : ZMod N} : GatesDef.or a.toZMod b.toZMod c ↔ c = (a || b).toZMod := by
unfold GatesDef.or
cases a <;> cases b <;> {
simp [is_bool, Bool.toZMod, Bool.toNat]
simp [GatesDef.is_bool, Bool.toZMod, Bool.toNat]
}

@[simp]
theorem Gates.not_bool {N} [Fact (N>1)] {a : Bool} : (1 : ZMod N) - a.toZMod = (!a).toZMod := by
cases a <;> simp [sub]
cases a <;> simp [GatesDef.sub]

@[simp]
lemma Gates.select_bool {N} [Fact (N > 1)] {c : Bool} {t f r : ZMod N}: Gates.select (c.toZMod (N:=N)) t f r ↔ r = if c then t else f := by
cases c <;> simp [select, is_bool]
lemma Gates.select_bool {N} [Fact (N > 1)] {c : Bool} {t f r : ZMod N}: GatesDef.select (c.toZMod (N:=N)) t f r ↔ r = if c then t else f := by
cases c <;> simp [GatesDef.select, GatesDef.is_bool]

@[simp]
lemma Gates.eq_1_toZMod {N} [Fact (N>1)] {b : Bool}: Gates.eq (b.toZMod (N:=N)) 1 ↔ b := by
cases b <;> simp [eq, is_bool]
lemma Gates.eq_1_toZMod {N} [Fact (N>1)] {b : Bool}: GatesDef.eq (b.toZMod (N:=N)) 1 ↔ b := by
cases b <;> simp [GatesDef.eq, GatesDef.is_bool]

@[simp]
lemma Gates.ite_0_toZMod {N} [Fact (N>1)] {b f: Bool}: (if b then (0:ZMod N) else f.toZMod (N:=N)) = (if b then false else f).toZMod := by
cases b <;> simp

theorem Gates.to_binary_rangecheck {a : ZMod N} {n out} (h: to_binary a n out): a.val < 2^n := by
theorem Gates.to_binary_rangecheck {a : ZMod N} {n out} (h: GatesDef.to_binary a n out): a.val < 2^n := by
rcases h with ⟨hrec, hbin⟩
replace hbin := is_vector_binary_iff_exists_bool_vec.mp hbin
rcases hbin with ⟨x, ⟨_⟩⟩
rw [recover_binary_zmod'_map_toZMod_eq_Fin_ofBitsLE] at hrec

cases Nat.lt_or_ge (2^n) N with
| inl hp =>
cases hrec
Expand All @@ -127,8 +130,8 @@ theorem Gates.to_binary_rangecheck {a : ZMod N} {n out} (h: to_binary a n out):
. simp [*]

lemma Gates.to_binary_iff_eq_Fin_ofBitsLE {l : ℕ} {a : ZMod N} {v : Vector (ZMod N) l}:
Gates.to_binary a l v ↔ ∃v', v = v'.map Bool.toZMod ∧ a = (Fin.ofBitsLE v').val := by
unfold to_binary
GatesDef.to_binary a l v ↔ ∃v', v = v'.map Bool.toZMod ∧ a = (Fin.ofBitsLE v').val := by
unfold GatesDef.to_binary
rw [is_vector_binary_iff_exists_bool_vec]
apply Iff.intro
. rintro ⟨⟨_⟩, ⟨x, ⟨_⟩⟩⟩
Expand All @@ -152,7 +155,7 @@ lemma map_toZMod_ofZMod_eq_self_of_is_vector_binary {n : ℕ} {v : Vector (ZMod
simp [*]

lemma Gates.to_binary_iff_eq_fin_to_bits_le_of_pow_length_lt {l : ℕ} {a : ZMod N} {v : Vector (ZMod N) l} (pow_lt : 2 ^ l < N):
Gates.to_binary a l v ↔ ∃(ha : a.val < 2^l), v = (Fin.toBitsLE ⟨a.val, ha⟩).map Bool.toZMod := by
GatesDef.to_binary a l v ↔ ∃(ha : a.val < 2^l), v = (Fin.toBitsLE ⟨a.val, ha⟩).map Bool.toZMod := by
apply Iff.intro
. intro to_bin
have := Gates.to_binary_rangecheck to_bin
Expand All @@ -171,5 +174,5 @@ lemma Gates.to_binary_iff_eq_fin_to_bits_le_of_pow_length_lt {l : ℕ} {a : ZMod
simp [*]

lemma Gates.from_binary_iff_eq_ofBitsLE_mod_order {l : ℕ} {a : Vector Bool l} {out : ZMod N}:
Gates.from_binary (a.map Bool.toZMod) out ↔ out = (Fin.ofBitsLE a).val := by
simp [from_binary, recover_binary_zmod'_map_toZMod_eq_Fin_ofBitsLE, eq_comm]
GatesDef.from_binary (a.map Bool.toZMod) out ↔ out = (Fin.ofBitsLE a).val := by
simp [GatesDef.from_binary, recover_binary_zmod'_map_toZMod_eq_Fin_ofBitsLE, eq_comm]
Loading