Skip to content

raredd/cmprsk2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cmprsk2

Extensions for the cmprsk package.

See intro vignette

To install:

# install.packages('devtools')
devtools::install_github('raredd/cmprsk2', build_vignettes = TRUE)

crr formula method

## model deaths with ltx and withdraw as competing events
cr1 <- crr2(Surv(futime, event(censored) == death) ~ age + sex + abo,
            data = transplant)

## include an all-cause death overall survival model
cr2 <- crr2(Surv(futime, event(censored) == death) ~ age + sex + abo,
            data = transplant,
            cox = Surv(futime, event == 'death') ~ age + sex + abo)

crr2 summary methods

summary(cr1)
## $`CRR: death`
##         HR  L95  U95    p
## age   1.02 1.00 1.04 0.09
## sexf  0.65 0.40 1.07 0.09
## aboB  1.48 0.70 3.12 0.31
## aboAB 1.14 0.34 3.87 0.83
## aboO  1.48 0.85 2.56 0.17
## 
## $`CRR: ltx`
##         HR  L95  U95    p
## age   0.99 0.99 1.00 0.15
## sexf  1.09 0.93 1.29 0.28
## aboB  0.70 0.54 0.91 0.01
## aboAB 0.91 0.59 1.39 0.65
## aboO  0.59 0.49 0.70 0.00
## 
## $`CRR: withdraw`
##         HR  L95   U95    p
## age   0.98 0.95  1.02 0.28
## sexf  1.42 0.75  2.68 0.28
## aboB  2.35 0.82  6.74 0.11
## aboAB 3.04 0.81 11.43 0.10
## aboO  2.37 1.04  5.41 0.04
library('htmlTable')
summary(
  cr2,
  html = TRUE, n = TRUE, ref = TRUE,
  htmlArgs = list(
    caption = 'CRR models.',
    rgroup = c('Age', 'Sex', 'Blood type'),
    rnames = c('+1 year change', 'Female', 'B', 'AB', 'O'),
    css.cell = 'white-space: nowrap; padding: 0px 5px 0px;'
  )
)
CRR models.
  Cox PH  CRR: death  CRR: ltx  CRR: withdraw
Total
n = 797 (%)
  Events
n = 66 (8)
HR (95% CI) p   Events
n = 66 (8)
HR (95% CI) p   Events
n = 618 (78)
HR (95% CI) p   Events
n = 37 (5)
HR (95% CI) p
Age
  +1 year change 797 (100)   66 (100) 1.02 (0.99, 1.04) 0.16   66 (100) 1.02 (1.00, 1.04) 0.090   618 (100) 0.99 (0.99, 1.00) 0.15   37 (100) 0.98 (0.95, 1.02) 0.28
Sex
  Female 438 (55)   42 (64)   42 (64)   332 (54)   17 (46)
  B 359 (45)   24 (36) 0.69 (0.42, 1.14) 0.15   24 (36) 0.65 (0.40, 1.07) 0.093   286 (46) 1.09 (0.93, 1.29) 0.28   20 (54) 1.42 (0.75, 2.68) 0.28
Blood type
  AB 317 (40)   21 (32)   21 (32)   261 (42)   8 (22)
  O 102 (13)   10 (15) 1.15 (0.54, 2.45) 0.72   10 (15) 1.48 (0.70, 3.12) 0.31   77 (12) 0.70 (0.54, 0.91) 0.008   6 (16) 2.35 (0.82, 6.74) 0.11
  NA 40 (5)   3 (5) 1.18 (0.35, 3.96) 0.79   3 (5) 1.14 (0.34, 3.87) 0.83   32 (5) 0.91 (0.59, 1.39) 0.65   3 (8) 3.04 (0.81, 11.43) 0.10
  NA 338 (42)   32 (48) 0.99 (0.57, 1.73) 0.98   32 (48) 1.48 (0.85, 2.56) 0.17   248 (40) 0.59 (0.49, 0.70) < 0.001   20 (54) 2.37 (1.04, 5.41) 0.040

cuminc formula method

## can use same formula as crr2
ci1 <- cuminc2(Surv(futime, event(censored) == death) ~ abo,
               data = transplant)

## but event indicator is not required
ci2 <- cuminc2(Surv(futime, event(censored)) ~ sex,
               data = transplant)

cuminc2 summary methods

summary(ci1)
## $est
##                   0     500    1000    1500    2000
## A death     0.00000 0.06191 0.06191      NA      NA
## B death     0.00000 0.08799 0.08799 0.12717 0.12717
## AB death    0.00000 0.07317      NA      NA      NA
## O death     0.00289 0.09106 0.09598 0.09598      NA
## A ltx       0.00000 0.81022 0.84174      NA      NA
## B ltx       0.00000 0.71905 0.77478 0.77478 0.77478
## AB ltx      0.02439 0.80488      NA      NA      NA
## O ltx       0.00000 0.69130 0.76563 0.78129      NA
## A withdraw  0.00000 0.02481 0.02481      NA      NA
## B withdraw  0.00000 0.05886 0.05886 0.05886 0.05886
## AB withdraw 0.00000 0.07317      NA      NA      NA
## O withdraw  0.00000 0.04413 0.06470 0.06470      NA
## 
## $var
##                   0     500    1000    1500    2000
## A death     0.00000 0.00018 0.00018      NA      NA
## B death     0.00000 0.00081 0.00081 0.00259 0.00259
## AB death    0.00000 0.00192      NA      NA      NA
## O death     0.00001 0.00024 0.00027 0.00027      NA
## A ltx       0.00000 0.00048 0.00046      NA      NA
## B ltx       0.00000 0.00202 0.00233 0.00233 0.00233
## AB ltx      0.00059 0.00426      NA      NA      NA
## O ltx       0.00000 0.00064 0.00058 0.00062      NA
## A withdraw  0.00000 0.00008 0.00008      NA      NA
## B withdraw  0.00000 0.00056 0.00056 0.00056 0.00056
## AB withdraw 0.00000 0.00177      NA      NA      NA
## O withdraw  0.00000 0.00012 0.00020 0.00020      NA
## 
## $events
##             0 500 1000 1500 2000
## A death     0  20   20   21   21
## B death     0   9    9   10   10
## AB death    0   3    3    3    3
## O death     1  31   32   32   32
## A ltx       0 262  269  269  269
## B ltx       0  74   77   77   77
## AB ltx      1  33   33   33   33
## O ltx       0 234  254  256  256
## A withdraw  0   8    8    8    8
## B withdraw  0   6    6    6    6
## AB withdraw 0   3    3    3    3
## O withdraw  0  15   20   20   20
## 
## $total_events
##     A death     B death    AB death     O death       A ltx       B ltx      AB ltx       O ltx 
##          21          10           3          32         269          78          33         256 
##  A withdraw  B withdraw AB withdraw  O withdraw 
##           8           6           3          20 
## 
## $total_groups
##   A   B  AB   O 
## 325 103  41 346 
## 
## $total_atrisk
##    0  500 1000 1500 2000 
##  811   94   20    2    1
summary(ci1, times = 0:10 * 100)$est
##                   0     100     200     300     400     500     600     700     800     900    1000
## A death     0.00000 0.03390 0.04317 0.05562 0.06191 0.06191 0.06191 0.06191 0.06191 0.06191 0.06191
## B death     0.00000 0.04854 0.06796 0.07767 0.08799 0.08799 0.08799 0.08799 0.08799 0.08799 0.08799
## AB death    0.00000 0.04878 0.04878 0.04878 0.04878 0.07317      NA      NA      NA      NA      NA
## O death     0.00289 0.05250 0.07597 0.08185 0.08779 0.09106 0.09106 0.09106 0.09106 0.09106 0.09598
## A ltx       0.00000 0.48743 0.72831 0.77824 0.80346 0.81022 0.83623 0.84174 0.84174 0.84174 0.84174
## B ltx       0.00000 0.33010 0.50485 0.69903 0.71905 0.71905 0.74866 0.74866 0.74866 0.77478 0.77478
## AB ltx      0.02439 0.56098 0.60976 0.73171 0.80488 0.80488      NA      NA      NA      NA      NA
## O ltx       0.00000 0.23354 0.43015 0.54777 0.64341 0.69130 0.73601 0.75159 0.75580 0.76071 0.76563
## A withdraw  0.00000 0.00926 0.01853 0.02167 0.02481 0.02481 0.02481 0.02481 0.02481 0.02481 0.02481
## B withdraw  0.00000 0.02913 0.03883 0.04854 0.05886 0.05886 0.05886 0.05886 0.05886 0.05886 0.05886
## AB withdraw 0.00000 0.02439 0.07317 0.07317 0.07317 0.07317      NA      NA      NA      NA      NA
## O withdraw  0.00000 0.01167 0.02927 0.03810 0.04413 0.04413 0.04413 0.06470 0.06470 0.06470 0.06470

cuminc plotting methods

par(mfrow = c(2, 2))

# ciplot(ci2)
plot(ci2, add = TRUE) ## equivalently

plot(ci2, split = 'event', add = TRUE, wh.events = 'est')

## convenience wrapper
par(mfrow = c(2, 2))
ciplot_by(
  rhs = 'sex', time = 'futime', event = 'event',
  data = transplant, by = 'abo', xlim = c(0, 1500),
  events = FALSE, single = FALSE, events.total = 2100
)

extras

## pairwise gray tests
cuminc_pairs(ci1)$p.value
## $death
##        A     B    AB  O
## A     NA 1.000 1.000  1
## B  0.391    NA 1.000  1
## AB 0.788 0.776    NA  1
## O  0.201 0.877 0.712 NA
## 
## $ltx
##        A     B    AB     O
## A     NA 0.035 0.805 0.000
## B  0.007    NA 0.442 0.442
## AB 0.805 0.162    NA 0.051
## O  0.000 0.147 0.013    NA
## 
## $withdraw
##        A     B    AB     O
## A     NA 0.446 0.446 0.253
## B  0.097    NA 1.000 1.000
## AB 0.089 0.753    NA 1.000
## O  0.042 0.885 0.402    NA
timepoints2(
  ci2, html = TRUE,
  htmlArgs = list(
    caption = 'cuminc estimates at specific time points (<code>cuminc::timepoints</code>).'
  )
)
cuminc estimates at specific time points (cuminc::timepoints).
0 500 1000 1500 2000
m death 0.002 0.091 0.097 0.104 0.104
f death 0.000 0.063 0.063 - -
m ltx 0.000 0.738 0.786 0.800 0.800
f ltx 0.003 0.761 0.822 - -
m withdraw 0.000 0.030 0.045 0.045 0.045
f withdraw 0.000 0.052 0.056 - -
AIC(cr1$`CRR: death`)
##      AIC 
## 867.6161
sapply(cr1, BIC)
##    CRR: death.BIC      CRR: ltx.BIC CRR: withdraw.BIC 
##          878.5644         7494.9446          496.6589
logLik(cr1$`CRR: death`)
## 'log Lik.' -428.8081 (df=5)
deviance(cr1$`CRR: death`)
## Call:
## crr(transplant[, "futime"], transplant[, "event"], cov1 = model.matrix(~age + 
##     sex + abo, transplant)[, -1L, drop = FALSE], cencode = "censored", 
##     failcode = "death", variance = TRUE, cengroup = rep(1L, nrow(transplant)), 
##     gtol = 1e-06, maxiter = 10, init = c(0L, 0L, 0L, 0L, 0L))
## 
## Deviance = 7.15 on 5 df, 0.20984
crrFits(cr1$`CRR: death`)
## Model selection table
## 
## 0: Null Model 
## 
## 1: Model 1 call:
## crr(transplant[, "futime"], transplant[, "event"], cov1 = model.matrix(~age + 
##     sex + abo, transplant)[, -1L, drop = FALSE], cencode = "censored", 
##     failcode = "death", variance = TRUE, cengroup = rep(1L, nrow(transplant)), 
##     gtol = 1e-06, maxiter = 10, init = c(0L, 0L, 0L, 0L, 0L))
## 
## 
##     n  loglik df k -2logLik -2logLik diff    AIC AIC diff    BIC BIC diff
## 0 797 -432.38  0 1   864.76        7.1484 864.76   0.0000 864.76      0.0
## 1 797 -428.81  5 6   857.62        0.0000 867.62   2.8516 878.56     13.8
crrwald.test(cr1$`CRR: death`)
##               chi2 df          P
## Overall 8.11151956  5 0.15019572
## age     2.86948310  1 0.09027386
## sexf    2.82220518  1 0.09296860
## aboB    1.04828004  1 0.30590354
## aboAB   0.04546327  1 0.83115446
## aboO    1.91025511  1 0.16693492

About

Extensions for the cmprsk package.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages