This repository contains an end to end demonstration that starts with some data, trains a machine learning model and deploys it with Kogito.
The following tools must be installed on the system:
- Docker >= 20.10.3
- Docker-compose >= 1.25.2
- Java >= 11
- Maven >= 3.6.3
- R >= 3.6.3
The following R packages must be installed: pmml
, randomForest
.
Generate the training set using the script generate_dataset.R
Rscript generate_dataset.R
A file dataset.csv
will be created under the current directory.
Train and export the PMML model using the script train.R
Rscript train.R
A file risk_rf.pmml
will be created under the current directory.
Start the business central container with
docker run -it -p8080:8080 --rm jboss/business-central-workbench-showcase:7.51.0.Final
Follow the next instructions:
- Open
http://localhost:8080/business-central/kie-wb.jsp
with your browser. - Login with
admin:admin
. - Add a new namespace
mySpace
and a new projectmyMortgage
. - Click
import asset
and select the pmml model you created in the previous step. When it is opened, replace the pmml version from4.4
to4.2
. Save and download the model. - Add another asset with the file
myMortgage.dmn
and open it. Click on theIncluded Models
section and select therisk_rf
pmml model, then open theRisk Score Model
bkm function and set therisk_rf
model and inputs. Save and download the model
Create a new quarkus kogito application with
mvn io.quarkus:quarkus-maven-plugin:2.0.3.Final:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=kogito-quickstart \
-Dextensions="kogito" \
-DnoExamples
cd kogito-quickstart
and add the following dependencies in the pom.xml
file
<!-- PMML -->
<dependency>
<groupId>org.kie.kogito</groupId>
<artifactId>kogito-addons-quarkus-tracing-decision</artifactId>
</dependency>
<dependency>
<groupId>org.kie.kogito</groupId>
<artifactId>kogito-pmml</artifactId>
</dependency>
<dependency>
<groupId>org.kie</groupId>
<artifactId>kie-dmn-jpmml</artifactId>
<version>7.55.0.Final</version>
</dependency>
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator</artifactId>
<version>1.5.15</version>
</dependency>
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator-extension</artifactId>
<version>1.5.15</version>
</dependency>
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-smallrye-openapi</artifactId>
</dependency>
<dependency>
<groupId>org.kie.kogito</groupId>
<artifactId>kogito-addons-quarkus-monitoring-prometheus</artifactId>
</dependency>
Add the following property in the application.properties
file so to get the nice swagger-ui
quarkus.swagger-ui.always-include=true
and copy the myMortgage.dmn
and risk_rf.pmml
files under the resources
folder of the project.
Package the application with
mvn clean package -DskipTests
and build the docker image with
docker build -f src/main/docker/Dockerfile.jvm -t quay.io/jrota/pmml-kogito:1.0 .
Clone the kogito-examples
repository and checkout the release branch 1.9.0.Final
git clone https://github.com/kiegroup/kogito-examples.git
git checkout 1.9.0.Final
open the file kogito-examples/trusty-demonstration/docker-compose/docker-compose.yml
and replace the kogito-app
image with quay.io/jrota/pmml-kogito:1.0
.
Stop the business central container so to free the 8080
port.
Start docker-compose with
docker-compose -f kogito-examples/trusty-demonstration/docker-compose/docker-compose.yml up
Copy the generated grafana dashboards to the docker-compose/grafana
folder
cp target/classes/META-INF/resources/monitoring/dashboards/* kogito-examples/trusty-demonstration/docker-compose/grafana/provisioning/dashboards/
Open the kogito application swagger-ui at localhost:8080/q/swagger-ui
and send a POST request to the endpoint myMortgage
with the following payload
{
"Finantial Situation": {
"MonthlySalary": 2000,
"TotalAsset": 10000
},
"Mortgage Request": {
"TotalRequired": 100000,
"NumberInstallments": 100
},
"Applicant": {
"First Name": "Jacopo",
"Last Name": "Rota",
"Age": 29,
"Email": "[email protected]"
}
}
Check the trusty audit console at localhost:1338
and play with it!