Project for industrial programming course
Classifiers and data preparation
Required packages: pandas, scikit-learn
usage:
python3 data_praparation.py
python3 classifier.py
Work examples:
Starting data preparation
Data saved to data.csv
KNN best result:
n = 5
accuracy = 0.71
SVC best result:
kernel = linear
accuracy = 0.71
CatBoost best result:
iterations = 200, cv = 10, learning_rate = 0.05
accuracy = 0.75
Best classifier is CatBoost with accuracy = 0.75
Result is saved in result.txt
PACP streams visualising tool
Required packages: tshark, matplotlib
usage: python3 plotter.py [-h] path [protocol] [mode] [streams] [time_unit]
Build graphs for network streams
positional arguments:
path Path to pcap file or directory with pcap files
protocol Protocol in interest: TCP, QUIC, UDP or "any"
mode Graph type: grid or united plot
streams Streams to be plotted, space-separated
time_unit Time unit on the plot
optional arguments:
-h, --help show this help message and exit
Work examples: