-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- moves the examples back to the qopt folder - made the code compatible with the latest filter functions version
- Loading branch information
Showing
16 changed files
with
289 additions
and
113 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": true, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from qopt import *\n", | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"outputs": [], | ||
"source": [ | ||
"gaussian_filter = GaussianConvolution(\n", | ||
" sigma=2,\n", | ||
" # here the num_ctrls is the number of optimization parameters\n", | ||
" num_ctrls=1\n", | ||
")\n", | ||
"\n", | ||
"over_sampl = OversamplingTF(\n", | ||
" # here the num_ctrls is the number of optimization parameters\n", | ||
" num_ctrls=1,\n", | ||
" bound_type=('n', 8),\n", | ||
" oversampling=5,\n", | ||
")\n", | ||
"\n", | ||
"transfer_func = ConcatenateTF(\n", | ||
" tf1=over_sampl,\n", | ||
" tf2=gaussian_filter\n", | ||
")\n", | ||
"\n", | ||
"transfer_func.set_times(np.ones(10))" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": "[<matplotlib.lines.Line2D at 0x1a816a59cc8>]" | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": "<Figure size 432x288 with 1 Axes>", | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfpUlEQVR4nO3deXCb933n8fcX4AnxEkTqIHhIduRDoi9ZUa5N1kkax3LSOHayM3HTHG5Sjyd2Jzvb7sbZTLvTzWw63U4y3UycON40V7NbN41lR/UqcbJOnU639UaXLZE6bK0kHqAkUqR4iOAF4Ld/AKBpijJBEuSDB/i8ZjgSgMfSxxL40Q+/5/f8HnPOISIi/hfwOoCIiOSGCl1EpECo0EVECoQKXUSkQKjQRUQKRIlXv3F9fb3bvHmzV7+9iIgvHTx48KJzrmG+1zwr9M2bN3PgwAGvfnsREV8ys86rvaYpFxGRAqFCFxEpECp0EZECoUIXESkQKnQRkQKxYKGb2XfNrM/M2q/yupnZ183slJkdMbMduY8pIiILyWaE/n3grjd4fTewNf31IPCt5ccSEZHFWnAdunPuH81s8xsccg/wQ5fah/dFM6szs03OuXO5CimQSDouxaboH52c+RqbijOdcMQTSeJJRzzhSDrHzIbI2hpZvGCGAQEzSoJGMGCUBIzSYICK0gAN1eU0VFXQUF3OuqoySoOa+c2VXFxYFAG6Zz3uST93RaGb2YOkRvG0tLTk4LcubLGpOM91nOepg1FePD1APLn4gjZbgWAiV7GUMURbpIb7bmvinlsbWVdVnvtQRSQXhT5fZcz71+qcewJ4AmDnzp0aPl7FgbODPLm/m58dPcfYVIKmtZU88I7NNK0NpUY31eU0VJVTVVFCaSBASTA1EioJBAgYmFpcPOacI+lSnyzjyeTMJ8nYVIKLl9OfMi9PcmF4gl+d7OM/P3uMr+w7zh3Xr+ejt0e4c9tGAgG9jxcrF4XeAzTPetwE9Obg1y1Kf7u/iy88dZSq8hI+cPMmPrKjiTdvDuvNLb5iZgQNggGjbNapunVAczj0umP/3Z3Xc/L8KHsO9fD04Sj/+/gFPvm2Vv70Q9s1OFmkXBT6XuARM3sSeAswrPnzpfn1K/38x6fbeefWer79idsJlXm21Y7Iqrp+YzVfvPtG/v37r+fPfnaCv/qnMzStreTBd13rdTRfWbAxzOxvgDuAejPrAf4TUArgnHsc2AfcDZwCYsADKxW2kLVHh/ncjw5y3YZqvvnxHSpzKUolwQBfuvtGzo9M8JV9J9hUW8lv39LodSzfyGaVy/0LvO6Ah3OWqAhFh8b5ve/vp7aylO8/8GaqK0q9jiTimUDA+Oq/uYW+kQn+8Mcvs6Gmgl1bwl7H8gWtF/LY8Pg0D3zvN4xPJ/jeA7vYUFPhdSQRz1WUBvnvn9xJU7iS3//hAU71jXodyRdU6B77o797mTMXx/j2J27n+o3VXscRyRt1oTJ+8MAuSoMBfu/7B5iKJ72OlPdU6B7quRTjl8cu8Lk73sTbr633Oo5I3mkOh/iz+26iazDGCyf7vI6T91ToHvrpS6nVnR+9vcnjJCL5693XN1BfVcbTh6NeR8l7KnSPOOd46lAPu7aEr1iXKyKvKQkG+NAtEZ4/3sdQbMrrOHlNhe6Rl3uGOd0/xkd2RLyOIpL37tsRYSqR5NkjusTljajQPfL0oR7KSwLsvmmT11FE8t72xhqu21ClaZcFqNA9MBVPsvflXt63bQM1WnMusiAz474dTRzsvMTZi2Nex8lbKnQPvHCyj0uxae7TdItI1u65tREz2KNR+lWp0D3w9OEo9VVlvHNrg9dRRHxjU20l77i2nqcP9+C01/+8VOirbCg2xfPH+/jQLRFt7C+ySPftiNA9OM6BzkteR8lLapRV9uyRc0wlkppuEVmC92/fSGVpkD2HeryOkpdU6Kvs6cNRrttQxfbGGq+jiPjOmvISdrdt5Nkj55iYTngdJ++o0FfR2YtjHOy8xL23NWnjfpElundHhNGJOM8f11YAc6nQV9H/OnoOM/jwbdrfWWSp3n5tPRtqynn2iG6MNpcKfRW91D3ENfVr2FRb6XUUEd8KBoy3XrOOl7uHvI6Sd1Toq6gjOkxbpNbrGCK+19ZYS+/wBAOXJ72OkldU6Ktk4PIkvcMTtDWq0EWWa3sktaigvXfE4yT5RYW+SjJvvMwbUUSWbnt6YNQeHfY4SX5Roa+SzBtvu0boIstWW1lKSzhER68KfTYV+irp6B2mJRyitlKbcYnkQlukhvaoplxmU6GvkvboCDfphKhIzrRFaukajDEcm/Y6St5Qoa+C4dg0XYMxzZ+L5FBmgUHHOU27ZKjQV0HmDacVLiK5k9k+o0PTLjNU6Ksg84bT/i0iubOuqpzG2gradWJ0hgp9FRyNDtNYW8G6qnKvo4gUlO2RWo5q6eIMFfoqaO8dZrtOiIrkXFtjLWcujnF5Mu51lLygQl9hlyfjnLk4pvlzkRXQFqnBOTh+TvPooEJfccfPjeBc6o0nIrmV2RtJV4ymqNBXWOaNpjXoIrm3oaaChupyXWCUpkJfYe3RERqqy1lfU+F1FJGC1NZYoy0A0rIqdDO7y8xOmtkpM3t0ntdrzezvzexlM+swswdyH9WfOnqHadNyRZEV0xap5dW+y7olHVkUupkFgceA3cA24H4z2zbnsIeBY865W4A7gK+aWVmOs/rOxHSCV/suaw90kRW0vbGWRNJx4vyo11E8l80IfRdwyjl32jk3BTwJ3DPnGAdUW+pGmVXAIFD064hOnB8lkXTaYVFkBWUWHOjEaHaFHgG6Zz3uST832zeAG4Fe4Cjweedccu4vZGYPmtkBMzvQ39+/xMj+kbngQStcRFZOpK6SulCpCp3sCn2+29O7OY/fD7wENAK3At8wsytazDn3hHNup3NuZ0NDwyKj+k9HdJi6UCmROt1DVGSlmBltjbXaAoDsCr0HaJ71uInUSHy2B4A9LuUUcAa4ITcR/au9d5ibIrWkZqJEZKW0RWo5eX6UqfgVEwNFJZtC3w9sNbMt6ROdHwP2zjmmC3gvgJltAK4HTucyqN9MxZOcPD+q+XORVdAWqWE64XjlQnGfGF2w0J1zceAR4DngOPBj51yHmT1kZg+lD/sy8HYzOwo8D3zBOXdxpUL7wam+y0wnHNu0ZFFkxWUGTseKfAuAkmwOcs7tA/bNee7xWT/vBe7MbTR/6xwYA+Ca+jUeJxEpfM1rKykJ2Mz3XbHSlaIrpGswBkDLupDHSUQKX0kwQGRtJV2D415H8ZQKfYV0DsZYGyqlpkI3hRZZDS3hEF0aoctK6B6M0RLW6FxktTSHQzOfjIuVCn2FdA7EaFmn+XOR1dIaDnEpNs3IxLTXUTyjQl8B8USS6NA4LWFdUCSyWjKfiLsGineUrkJfAb1DEySSjtawRugiqyWzAKGYp11U6Csg84Zq1hy6yKqZGaGr0CWXOgdTZ9pbtWRRZNVUV5QSXlNGp6ZcJJe6BmOUBQNs0F2KRFZVczhEt0bokkvdgzGawpUEA9qUS2Q1tRb50kUV+groHNAadBEvtIRDRIfGmU4U566LKvQcc87RNRCjVYUusupa1oVIJB3nhia8juIJFXqODcWmGZ2Ma4WLiAcyn4wzCxOKjQo9x2Y25VKhi6y6Yl+6qELPsc70G6lVl/2LrLqNNRWUBQNFe7WoCj3HumcuKtJl/yKrLRAwmsKVGqFLbnQOjNFQXU6oLKt7h4hIjrWGQ0V7cZEKPce6tG2uiKda0hcXOee8jrLqVOg5piWLIt5qWbeG0ck4l2LFt42uCj2HJuMJzo1MaMmiiIeKeaWLCj2HopfGcU6bcol4qbWIt9FVoedQp9agi3iueW3mRhfFd3GRCj2HMksWWzRCF/FMZVmQ9dXlGqHL8nQOxKgoDdBQVe51FJGi1lKkSxdV6DmUWbJopm1zRbzUUqT7oqvQc6hrIEaL7iMq4rmWdSHOjUwwGU94HWVVqdBzxDmni4pE8kRLOIRz0HNp3Osoq0qFniP9lycZn05oyaJIHphZulhk8+gq9Bzp1pJFkbzRXKQXF6nQcyRzRl1LFkW811BVTmVpsOhWumRV6GZ2l5mdNLNTZvboVY65w8xeMrMOM/t1bmPmv67BGGbQtFbb5op4zcxoKcIbRi+4x6uZBYHHgPcBPcB+M9vrnDs265g64JvAXc65LjNbv0J581bXYIxNNRWUlwS9jiIipD4taw79SruAU8650865KeBJ4J45x/wOsMc51wXgnOvLbcz81zUQ06ZcInkkM0Ivpm10syn0CNA963FP+rnZrgPWmtkLZnbQzD453y9kZg+a2QEzO9Df37+0xHmq+5IKXSSftIRDjE8n6L886XWUVZNNoc932ePcf/JKgNuBDwDvB/7YzK674j9y7gnn3E7n3M6GhoZFh81XU/EkfaOTmj8XySORutT3Y+/QhMdJVk82hd4DNM963AT0znPMz51zY865i8A/ArfkJmL+Oz88gXPQWKdCF8kXjTOFXjwXF2VT6PuBrWa2xczKgI8Be+cc81PgnWZWYmYh4C3A8dxGzV89Q6kTL00qdJG8EUl/Yo4W0dWiC65ycc7FzewR4DkgCHzXOddhZg+lX3/cOXfczH4OHAGSwHecc+0rGTyfZD7SaYQukj9qKkqoKi8hWkQj9KxuTe+c2wfsm/Pc43Me/wXwF7mL5h+Zj3Qbays8TiIiGWZGY11FURW6rhTNgeilcRqqy6ko1Rp0kXwSqavUHLosTu/wuKZbRPJQowpdFis6NE6kTtMtIvkmsraSS7FpYlNxr6OsChX6Mjnn6B0an1nzKiL5I1JkSxdV6Ms0ODbFxHRSUy4ieSjzfVksN7pQoS9T5gy6Rugi+afYrhZVoS9T5qOcRugi+Wd9dTnBgGnKRbITTf/LrxG6SP4pCQbYWFM8a9FV6MsUvTROqCxIXajU6ygiMo9IXaUKXbLTO5Rag24236aUIuK1xrqKotnPRYW+TNEhXVQkks8iays5PzJBIln4N7pQoS+T1qCL5LfGukoSSUffaOGvdFGhL8PEdIKBsSldJSqSxzIDrmKYdlGhL8PMGnTdqUgkb80UehGcGFWhL8PMGvRaFbpIvmpUoUs2dFGRSP5bU15CXai0KC4uUqEvQ/TSOAHTjS1E8l1jbWVRXP6vQl+G6NAEG2oqKA3qj1Ekn0XWVuqkqLyx6FBMSxZFfKBY7lykQl+G3qEJzZ+L+ECkrpLRyTjD49NeR1lRKvQlSiYd53TrORFfaCySG12o0Jeo//Ik0wmnNegiPtCYvvhPhS7zeu3GFlrhIpLvMgOvQl+LrkJfIq1BF/GP+jXllAUDKnSZX2YJlFa5iOS/QMCKYhtdFfoS9Q6NU11RQnWFbmwh4geNRbB0UYW+RFFtmyviK6lCL+yrRVXoSxQdmlChi/hIpK6SC6MTTMWTXkdZMSr0JerVnYpEfCVSV4lzcGGkcEfpKvQluJy+4kxr0EX8I/P92lPAJ0ZV6EugJYsi/lMMV4tmVehmdpeZnTSzU2b26Bsc92YzS5jZR3MXMf+8tmRRFxWJ+MWm2sK/WnTBQjezIPAYsBvYBtxvZtuuctyfA8/lOmS+ee0q0ZDHSUQkWxWlQeqrygv64qJsRui7gFPOudPOuSngSeCeeY77A+ApoC+H+fJS79A4JQGjobrc6ygisgiRuoqiL/QI0D3rcU/6uRlmFgHuBR5/o1/IzB40swNmdqC/v3+xWfNG12CMyNpKggHzOoqILEJTOET3YMzrGCsmm0Kfr7XcnMd/CXzBOZd4o1/IOfeEc26nc25nQ0NDlhHzT/dgjJawpltE/KYlHKLn0jiJ5NwKKwzZFHoP0DzrcRPQO+eYncCTZnYW+CjwTTP7cC4C5qNOFbqIL7WGQ8STrmBPjGZT6PuBrWa2xczKgI8Be2cf4Jzb4pzb7JzbDPwE+Jxz7plch80Hw+PTDMWmVegiPpT5vi3UaZcFC905FwceIbV65TjwY+dch5k9ZGYPrXTAfJN5I7SuU6GL+E1L+vu2s0ALvSSbg5xz+4B9c56b9wSoc+7Ty4+Vv7rSb4RmjdBFfGdTbSWlQZv5Pi40ulJ0kToHUm8ETbmI+E8wYDStDanQJaVrMEZ4TZn2QRfxqeZwiK4BFboAXYNjGp2L+FhLuFIjdEnp0pJFEV9rDa9heHya4di011FyToW+CNOJJL1DE1rhIuJjmQUNhThKV6EvQu9Q6gozrXAR8a/WmaWLYx4nyT0V+iJk/kXXlIuIf2mELsBrSxY15SLiX1XlJdRXlRXk1aIq9EXoHoxRVhJgQ7VubCHiZ83h0MwArZCo0BehcyBG89pKAto2V8TXWsKFeXGRCn0RtGRRpDC0hkP0Do0zFU96HSWnVOhZcs7RNRijdd0ar6OIyDI1h0MkXeHdX1SFnqVLsWkuT8a1ZFGkAGQGZoW266IKPUudA6k1q60qdBHfaynQpYsq9CzNrEHXkkUR31tfXU55SaDgli6q0LOU+YtvXqtCF/G7QMDSSxcL62pRFXqWOgdirK8up7Is6HUUEcmB1NJFnRQtSlqyKFJYWsIhugbGcM55HSVnVOhZ6hqMaf5cpIC0hEOMTSUYHJvyOkrOqNCzMDGd4PzIhEboIgWktQBvGK1Cz0LPpXGc06ZcIoUkM0ArpJUuKvQsdGvbXJGCM7ONbgFt0qVCz0JmaVNLWJf9ixSKitIgG2rKNeVSbLoGxwmVBamvKvM6iojkUKHtuqhCz0LX4Bgt4RBm2jZXpJC0hNdoyqXYdA3GtCmXSAFqCYc4PzLBxHTC6yg5oUJfwMy2uSp0kYKTWbnWc6kwRukq9AX0j04yMZ3URUUiBajQbhitQl/AmYupFS6achEpPJkR+pmLKvSicOzcCADbNtV4nEREcm3dmjLqq8o51jvidZScyKrQzewuMztpZqfM7NF5Xv+4mR1Jf/2zmd2S+6jeaI+OUF9Vzvrqcq+jiEiOmRltkRo6eoe9jpITCxa6mQWBx4DdwDbgfjPbNuewM8C/ds7dDHwZeCLXQb3S0TtMW6RGSxZFClRbYy2v9l0uiJUu2YzQdwGnnHOnnXNTwJPAPbMPcM79s3PuUvrhi0BTbmN6Y2I6wat9l7kpUut1FBFZIW2RWhJJx4nzo15HWbZsCj0CdM963JN+7mo+A/xsvhfM7EEzO2BmB/r7+7NP6ZET50dJJB3bG1XoIoWqLZI6P9Ye9f+0SzaFPt9cw7w7wpvZu0kV+hfme90594RzbqdzbmdDQ0P2KT2S+QvO/IWLSOGJ1FVSFyotiHn0kiyO6QGaZz1uAnrnHmRmNwPfAXY75wZyE89bHb3D1IVKidRVeh1FRFaImdHWWEt71P8rXbIZoe8HtprZFjMrAz4G7J19gJm1AHuATzjnXsl9TG8cjQ7T1lirE6IiBW57pIaT50eZiie9jrIsCxa6cy4OPAI8BxwHfuyc6zCzh8zsofRhfwKsA75pZi+Z2YEVS7xKpuJJTp4fZbumW0QKXltjLVOJJK9c8PeJ0WymXHDO7QP2zXnu8Vk//yzw2dxG89YrF0aZTjjadEJUpOC1pVeypZYp+/d7XleKXkXmBImWLIoUvtZwiOryEt/Po6vQr6I9OkJ1eYluOydSBAIBY1tjDe0+X+miQr+K9t5htjXWEAjohKhIMWiL1HL83AjxhH9PjKrQ5xFPJDl+bsTXc2kisjhtkRomppOcTu+w6kcq9HmcvjjGxHRSFxSJFJHMAgg/XzGqQp/H0Z70FaJa4SJSNK5pqKKiNMBRFXphae8dpqI0wDUNVV5HEZFVEgwY2zbV0OHjlS4q9Hl0REfYtqmGoE6IihSVtkgtHb3DJJPzbleV91TocySTjo7eYa0/FylCbZFaxqYSnB3w54lRFfocZwfGGJtKsF2FLlJ0Zk6M+vSWdCr0OTJ/kTohKlJ8tm6ooiwYoMOnJ0ZV6HN0RIcpCwbYukEnREWKTWkwwA2bqn17xagKfY723mFu2FRNaVB/NCLFaHt6b3Tn/HdiVK01y8R0giPd/t5tTUSW5+amWobHp3m177LXURZNhT7Lr070MToZZ3fbRq+jiIhH3nvjeoIB45nDUa+jLJoKfZY9h3rYUFPO26+t9zqKiHhkfXUF79pazzOHo75bj65CTxu4PMkLJ/v58K0RXVAkUuTu3dFE7/AEL57x1+2RVehpf/9yL/Gk474dTV5HERGP3bltA9XlJew55K9pFxV62p7DUbY31nD9xmqvo4iIxypKg9x90yZ+dvQc41MJr+NkTYUOnOob5UjPMPfeFvE6iojkiXt3RBibSvCLY+e9jpI1FTqw51CUYMD40K2NXkcRkTyxa3OYSF0lT/lo2qXoCz2ZdDxzOMo7t9azvrrC6zgikicCAePe2yL806v99I1MeB0nK0Vf6C+eGaB3eEInQ0XkCvfuiJB08NOXer2OkpWiL/Q9h6JUl5dw57YNXkcRkTxzbUMVtzbX8dShHq+jZKWoC318KsHPjp5j900bqSgNeh1HRPLQfTsinDg/yjEfbKlb1IX+i2PnGZtKaLpFRK7qgzc3Uho09vhglF60hd47NM5X9h1nS/0adm0Oex1HRPJUeE0Zd27fyA9f7GT/2UGv47yhoiz04fFpPv293xCbTPD4795OQJf6i8gb+C8fbqNpbSWf/cEBTuXxLoxFV+hT8SQP/fVBzlwc49ufuF1XhorIgupCZfzggV2UBo1Pf+839I9Oeh1pXkVV6M45vvDUEf7l9AD/9aM38/Y3aVdFEclOczjEdz/9ZgYuT/GZH+wnNhX3OtIViqrQv/qLV3j6cJQ/uvM67r1NJ0JFZHFubqrjG79zG+3RYf7gfx4mnkh6Hel1sip0M7vLzE6a2Skze3Se183Mvp5+/YiZ7ch91KW5NDbFX//LWe557P/wjX84xf27mnn43W/yOpaI+NR7b9zAlz/cxvMn+vitr/2arz//Kt2DMa9jAVCy0AFmFgQeA94H9AD7zWyvc+7YrMN2A1vTX28BvpX+cdU457g8Gad/dJL+0UnODU/w8/bzPH/iAtMJxw0bq/njD27jU29rxUwnQUVk6T7+llbqKsv40YudfO2Xr/C1X77CW68J89u3NLJ53RoaqstpqCqnLlS6qn2zYKEDu4BTzrnTAGb2JHAPMLvQ7wF+6FJ3VX3RzOrMbJNz7lyuA79wso8vP3uMRNIxnXDEk0kSyVSZT0y//uNPfVUZn3zbZj6yo4ltjTW5jiIiRewDN2/iAzdvoudSjGcOR3nqUJQvPd3+umNKg0ZNRSnBgFEaDFASNIIB4/43t/D777om55myKfQI0D3rcQ9Xjr7nOyYCvK7QzexB4EGAlpaWxWYFoLqilBs21lASNEoCAUoCRknQCJUFWV9dQX11GQ1VFTRUl3NNwxpKg0V1mkBEVlnT2hCPvGcrD7/7TZwdiHFhZGJmpuDi5UlGJqaJJ1ID0EQyyXTS0VBdviJZsin0+T4vzL3RXjbH4Jx7AngCYOfOnUu6Wd/trWu5vXXtUv5TEZEVY2ZsqV/Dlvo1nmXIZvjaAzTPetwEzN16LJtjRERkBWVT6PuBrWa2xczKgI8Be+ccsxf4ZHq1y1uB4ZWYPxcRkatbcMrFORc3s0eA54Ag8F3nXIeZPZR+/XFgH3A3cAqIAQ+sXGQREZlPNnPoOOf2kSrt2c89PuvnDng4t9FERGQxtARERKRAqNBFRAqECl1EpECo0EVECoSlzmd68Bub9QOdS/zP64GLOYyzmpTdG8ruDb9mz+fcrc65hvle8KzQl8PMDjjndnqdYymU3RvK7g2/Zvdrbk25iIgUCBW6iEiB8GuhP+F1gGVQdm8ouzf8mt2XuX05hy4iIlfy6whdRETmUKGLiBQI3xX6Qjeszidm9l0z6zOz9lnPhc3sl2b2avrHvLtbh5k1m9k/mNlxM+sws8+nn/dD9goz+42ZvZzO/qfp5/M+e4aZBc3ssJk9m37si+xmdtbMjprZS2Z2IP2cX7LXmdlPzOxE+n3/Nr9kn81XhT7rhtW7gW3A/Wa2zdtUb+j7wF1znnsUeN45txV4Pv0438SBP3TO3Qi8FXg4/efsh+yTwHucc7cAtwJ3pffo90P2jM8Dx2c99lP2dzvnbp21htsv2f8b8HPn3A3ALaT+/P2S/TXOOd98AW8Dnpv1+IvAF73OtUDmzUD7rMcngU3pn28CTnqdMYv/h58C7/NbdiAEHCJ1D1xfZCd1t6/ngfcAz/rpPQOcBernPJf32YEa4AzpRSJ+yj73y1cjdK5+M2o/2eDSd3NK/7je4zxvyMw2A7cB/xefZE9PWbwE9AG/dM75Jjvwl8B/AJKznvNLdgf8wswOpm8ID/7Ifg3QD3wvPdX1HTNbgz+yv47fCj2rm1FLbphZFfAU8G+dcyNe58mWcy7hnLuV1Gh3l5m1eRwpK2b2QaDPOXfQ6yxL9A7n3A5SU6IPm9m7vA6UpRJgB/At59xtwBh+mF6Zh98KvRBuRn3BzDYBpH/s8zjPvMyslFSZ/w/n3J70077InuGcGwJeIHUeww/Z3wF8yMzOAk8C7zGzH+GP7DjnetM/9gFPA7vwR/YeoCf9SQ7gJ6QK3g/ZX8dvhZ7NDavz3V7gU+mff4rU/HReMTMD/go47pz72qyX/JC9wczq0j+vBH4LOIEPsjvnvuica3LObSb13v6Vc+538UF2M1tjZtWZnwN3Au34ILtz7jzQbWbXp596L3AMH2S/gteT+Es4gXE38Arw/4AveZ1ngax/A5wDpkmNAj4DrCN10uvV9I9hr3POk/tfkZrKOgK8lP662yfZbwYOp7O3A3+Sfj7vs8/5/7iD106K5n12UvPQL6e/OjLfm37Ins55K3Ag/b55Bljrl+yzv3Tpv4hIgfDblIuIiFyFCl1EpECo0EVECoQKXUSkQKjQRUQKhApdRKRAqNBFRArE/wevMyuK5NkQGAAAAABJRU5ErkJggg==\n" | ||
}, | ||
"metadata": { | ||
"needs_background": "light" | ||
}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"plt.plot(transfer_func(np.ones((10,1))))" | ||
], | ||
"metadata": { | ||
"collapsed": false, | ||
"pycharm": { | ||
"name": "#%%\n" | ||
} | ||
} | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |