Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add generalized Hadamard gate #199

Merged
merged 2 commits into from
Jul 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion unitary/alpha/quantum_effect_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,4 +91,4 @@ def test_no_qutrits(compile_to_qubits):
piece = alpha.QuantumObject("q0", 2)
board.add_object(piece)
with pytest.raises(ValueError, match="Cannot apply effect to qids"):
alpha.Superposition()(piece)
alpha.Phase()(piece)
13 changes: 8 additions & 5 deletions unitary/alpha/qubit_effects.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
import cirq

from unitary.alpha.quantum_effect import QuantumEffect
from unitary.alpha.qudit_gates import QuditHadamardGate


class Phase(QuantumEffect):
Expand Down Expand Up @@ -67,14 +68,16 @@ def __eq__(self, other):


class Superposition(QuantumEffect):
"""Takes a qubit in a basis state into a superposition."""

def num_dimension(self) -> Optional[int]:
return 2
"""Transforms a qubit (or qudit) in a basis state into a (equal, in terms of
absolute magnitude) superposition of all basis states.
"""

def effect(self, *objects):
for q in objects:
yield cirq.H(q.qubit)
if q.qubit.dimension == 2:
yield cirq.H(q.qubit)
else:
yield QuditHadamardGate(dimension=q.qubit.dimension)(q.qubit)

def __eq__(self, other):
return isinstance(other, Superposition) or NotImplemented
Expand Down
20 changes: 19 additions & 1 deletion unitary/alpha/qubit_effects_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,13 +13,20 @@
# limitations under the License.
#

import enum
import pytest

import cirq

import unitary.alpha as alpha


class StopLight(enum.Enum):
RED = 0
YELLOW = 1
GREEN = 2


@pytest.mark.parametrize("compile_to_qubits", [False, True])
@pytest.mark.parametrize("simulator", [cirq.Simulator, alpha.SparseSimulator])
def test_flip(simulator, compile_to_qubits):
Expand Down Expand Up @@ -78,7 +85,7 @@ def test_partial_phase(simulator, compile_to_qubits):

@pytest.mark.parametrize("compile_to_qubits", [False, True])
@pytest.mark.parametrize("simulator", [cirq.Simulator, alpha.SparseSimulator])
def test_superposition(simulator, compile_to_qubits):
def test_qubit_superposition(simulator, compile_to_qubits):
board = alpha.QuantumWorld(sampler=simulator(), compile_to_qubits=compile_to_qubits)
piece = alpha.QuantumObject("t", 0)
board.add_object(piece)
Expand All @@ -87,6 +94,17 @@ def test_superposition(simulator, compile_to_qubits):
assert str(alpha.Superposition()) == "Superposition"


def test_qudit_superposition():
board = alpha.QuantumWorld(sampler=cirq.Simulator(), compile_to_qubits=False)
piece = alpha.QuantumObject("t", StopLight.GREEN)
board.add_object(piece)
alpha.Superposition()(piece)
results = board.peek([piece], count=100)
assert any(result == [StopLight.RED] for result in results)
assert any(result == [StopLight.YELLOW] for result in results)
assert any(result == [StopLight.GREEN] for result in results)


@pytest.mark.parametrize("compile_to_qubits", [False, True])
@pytest.mark.parametrize("simulator", [cirq.Simulator, alpha.SparseSimulator])
def test_move(simulator, compile_to_qubits):
Expand Down
36 changes: 36 additions & 0 deletions unitary/alpha/qudit_gates.py
Original file line number Diff line number Diff line change
Expand Up @@ -202,3 +202,39 @@ def _circuit_diagram_info_(self, args):
return cirq.CircuitDiagramInfo(
wire_symbols=("iSwap", "iSwap"), exponent=self._diagram_exponent(args)
)


class QuditHadamardGate(cirq.Gate):
"""Performs a Hadamard operation on the given qudit.
This is the equivalent of a H gate for qubits. When applied to a given pure state,
the state will be transformed to a (equal, in terms of absolute magnitude) superposition of
all pure states.
Args:
dimension: dimension of the qudits, for instance,
a dimension of 3 would be a qutrit.
"""

def __init__(self, dimension: int):
self.dimension = dimension

def _qid_shape_(self):
return (self.dimension,)

def _unitary_(self):
arr = (
1.0
/ np.sqrt(self.dimension)
* np.ones((self.dimension, self.dimension), dtype=np.complex64)
)
w = np.exp(1j * 2 * np.pi / self.dimension)
# Note: this unitary matrice always has first row and first column elements equal to one,
# so we only do calculation for rest of the elements.
for i in range(1, self.dimension):
for j in range(1, self.dimension):
arr[i, j] *= w ** (i * j)
return arr

def _circuit_diagram_info_(self, args):
return cirq.CircuitDiagramInfo(
wire_symbols=("H", "H"), exponent=self._diagram_exponent(args)
)
18 changes: 18 additions & 0 deletions unitary/alpha/qudit_gates_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,9 @@ def test_control_of_0_x(dest: int):
qudit_gates.QuditISwapPowGate(3),
qudit_gates.QuditSwapPowGate(3, exponent=0.5),
qudit_gates.QuditISwapPowGate(3, exponent=0.5),
qudit_gates.QuditHadamardGate(2),
qudit_gates.QuditHadamardGate(3),
qudit_gates.QuditHadamardGate(4),
],
)
def test_gates_are_unitary(gate: cirq.Gate):
Expand Down Expand Up @@ -294,3 +297,18 @@ def test_sqrt_iswap(q0: int, q1: int):
results = sim.run(c, repetitions=1000)
assert np.all(results.measurements["m0"] == q1)
assert np.all(results.measurements["m1"] == q0)


@pytest.mark.parametrize(
"d, q0", [(2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3)]
)
def test_hadamard(d: int, q0: int):
qutrit0 = cirq.NamedQid("q0", dimension=d)
c = cirq.Circuit()
c.append(qudit_gates.QuditPlusGate(d, addend=q0)(qutrit0))
c.append(qudit_gates.QuditHadamardGate(d)(qutrit0))
c.append(cirq.measure(qutrit0, key="m0"))
sim = cirq.Simulator()
results = sim.run(c, repetitions=1000)
for each_possible_outcome in range(d):
assert np.any(results.measurements["m0"] == each_possible_outcome)
Loading