Skip to content

qiz218591/Single-cell-sequencing-from-dataset-braod-institute-single-cell

Repository files navigation

Single-cell-sequencing-from-dataset-braod-institute-single-cell

Single cell sequencing from dataset braod institute single cell ##codes for single cell seq analysis### Study: Visium demo study 3798 cells download this dataset from the Broad institute single cell website library(Seurat) library(tidyverse) library(dplyr) library(patchwork) library(ggplot2) ##load the datasets da.data <- Read10X(data.dir ="C:/Users/Divya Agrawal/Downloads/") da <- CreateSeuratObject(counts = da.data, min.cells = 4, min.features = 210)

##QC and filtering## da[["percent.mt"]] <- PercentageFeatureSet(da, pattern = "^MT-") plot1<-FeatureScatter(da, feature1 = "nCount_RNA", feature2 = "nFeature_RNA") plot1 plot2 <-FeatureScatter(da, feature1 = "nCount_RNA", feature2 = "percent.mt") plot2 plot1 +plot2 da <- subset(da, subset = nFeature_RNA >215 & nFeature_RNA > 2500 & percent.mt <5) ##normalise the data## da <- NormalizeData(da, normalization.method = "LogNormalize", scale.factor = 10000) ##Find variable Features da <-FindVariableFeatures(da, selection.method = "vst", mfeatures=2000) tp10<- head(VariableFeatures(da), 10) tp10 plot1<- VariableFeaturePlot(da)

##scale the data all.genes <-rownames(da) pre_scaling <-da da <- ScaleData(da, features = all.genes)

##run linear dimensionality reduction

da<-RunPCA(da, features = VariableFeatures(object = da)) print(da[["pca"]], dims = 1:5, nfeatures = 5) VizDimLoadings(da, dims = 1:2, reduction= "pca") DimHeatmap(da, dims = 1, cells = 500) DimHeatmap(da, dims = 1:15, cells = 500) da <- JackStraw(da, num.replicate = 100) JackStrawPlot(da, dims = 1:20) da <-ScoreJackStraw(da, dims = 1:20) da <-ScoreJackStraw(da, dims = 1:20) JackStrawPlot(da, dims = 1:20)

##cluster

da <- FindNeighbors(da, dims = 1:10) da <-FindClusters(da, resolution = 0.5) head(Idents(da),5) ##run non linear dimensionality reduction on top of dimensionality reduction da <- RunUMAP(da, dims = 1:10) DimPlot(da, reduction = "umap")

##assign the biological meaning to these clusters da.markers <-FindAllMarkers(da, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) da.markers %>% group_by(cluster) %>% slice_max(n=2, order_by =avg_log2FC) da.markers

FeaturePlot(da, features = c("CTSH","CCL5","ENG","CD79A"))

##talk to a biologist

new.cluster.ids <- c("Naive CD T", "CD14+ Mono", "Memory CD4 T", "B","CD 8 T","FCG3A+ Mono", "NK cells", "DC" ,"platelet", "MAC complex") names(new.cluster.ids) <- levels(da) da <- RenameIdents(da, new.cluster.ids) DimPlot(da, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()

About

Single cell sequencing from dataset braod institute single cell

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published