Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add center argument to Normalize #2680

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 9 additions & 3 deletions botorch/models/transforms/input.py
Original file line number Diff line number Diff line change
Expand Up @@ -614,7 +614,7 @@ def _update_coefficients(self, X: Tensor) -> None:


class Normalize(AffineInputTransform):
r"""Normalize the inputs to the unit cube.
r"""Normalize the inputs have unit range and be centered at 0.5 (by default).

If no explicit bounds are provided this module is stateful: If in train mode,
calling `forward` updates the module state (i.e. the normalizing bounds). If
Expand All @@ -635,6 +635,7 @@ def __init__(
min_range: float = 1e-8,
learn_bounds: bool | None = None,
almost_zero: float = 1e-12,
center: float = 0.5,
) -> None:
r"""Normalize the inputs to the unit cube.

Expand Down Expand Up @@ -662,6 +663,7 @@ def __init__(
NOTE: This only applies if `learn_bounds=True`.
learn_bounds: Whether to learn the bounds in train mode. Defaults
to False if bounds are provided, otherwise defaults to True.
center: The center of the range for each parameter. Default: 0.5.

Example:
>>> t = Normalize(d=2)
Expand Down Expand Up @@ -704,10 +706,11 @@ def __init__(
"will not be updated and the transform will be a no-op.",
UserInputWarning,
)
self.center = center
super().__init__(
d=d,
coefficient=coefficient,
offset=offset,
offset=offset + (0.5 - center) * coefficient,
indices=indices,
batch_shape=batch_shape,
transform_on_train=transform_on_train,
Expand Down Expand Up @@ -745,7 +748,10 @@ def _update_coefficients(self, X) -> None:
coefficient = torch.amax(X, dim=reduce_dims).unsqueeze(-2) - offset
almost_zero = coefficient < self.min_range
self._coefficient = torch.where(almost_zero, 1.0, coefficient)
self._offset = torch.where(almost_zero, 0.0, offset)
self._offset = (
torch.where(almost_zero, 0.0, offset)
+ (0.5 - self.center) * self._coefficient
)

def get_init_args(self) -> dict[str, Any]:
r"""Get the arguments necessary to construct an exact copy of the transform."""
Expand Down
14 changes: 10 additions & 4 deletions test/models/transforms/test_input.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import itertools
from abc import ABC
from copy import deepcopy
from itertools import product
from random import randint

import torch
Expand Down Expand Up @@ -259,17 +260,19 @@ def test_normalize(self) -> None:
nlz(X)

# basic usage
for batch_shape in (torch.Size(), torch.Size([3])):
for batch_shape, center in product(
(torch.Size(), torch.Size([3])), [0.5, 0.0]
):
# learned bounds
nlz = Normalize(d=2, batch_shape=batch_shape)
nlz = Normalize(d=2, batch_shape=batch_shape, center=center)
X = torch.randn(*batch_shape, 4, 2, device=self.device, dtype=dtype)
for _X in (torch.stack((X, X)), X): # check batch_shape is obeyed
X_nlzd = nlz(_X)
self.assertEqual(nlz.mins.shape, batch_shape + (1, X.shape[-1]))
self.assertEqual(nlz.ranges.shape, batch_shape + (1, X.shape[-1]))

self.assertEqual(X_nlzd.min().item(), 0.0)
self.assertEqual(X_nlzd.max().item(), 1.0)
self.assertAllClose(X_nlzd.min().item(), center - 0.5)
self.assertAllClose(X_nlzd.max().item(), center + 0.5)

nlz.eval()
X_unnlzd = nlz.untransform(X_nlzd)
Expand All @@ -278,6 +281,9 @@ def test_normalize(self) -> None:
[X.min(dim=-2, keepdim=True)[0], X.max(dim=-2, keepdim=True)[0]],
dim=-2,
)
coeff = expected_bounds[..., 1, :] - expected_bounds[..., 0, :]
expected_bounds[..., 0, :] += (0.5 - center) * coeff
expected_bounds[..., 1, :] = expected_bounds[..., 0, :] + coeff
atol = 1e-6 if dtype is torch.float32 else 1e-12
rtol = 1e-4 if dtype is torch.float32 else 1e-8
self.assertAllClose(nlz.bounds, expected_bounds, atol=atol, rtol=rtol)
Expand Down
Loading