-
Notifications
You must be signed in to change notification settings - Fork 71
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add unit test and fix for flash_4 (#108)
- Loading branch information
Showing
2 changed files
with
49 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import torch | ||
import itertools | ||
from segment_anything_fast.flash_4 import _attention_rel_h_rel_w | ||
|
||
def test_op(batch, head, seq_len, hidden_dim, dtype): | ||
import math | ||
|
||
sm_scale = 1.0 / math.sqrt(hidden_dim) | ||
device = "cuda" | ||
torch.manual_seed(20) | ||
q = torch.empty( | ||
(batch, head, seq_len, hidden_dim), dtype=dtype, device=device | ||
).normal_(mean=0.0, std=0.5) | ||
k = torch.empty( | ||
(batch, head, seq_len, hidden_dim), dtype=dtype, device=device | ||
).normal_(mean=0.0, std=0.5) | ||
v = torch.empty( | ||
(batch, head, seq_len, hidden_dim), dtype=dtype, device=device | ||
).normal_(mean=0.0, std=0.5) | ||
w = int((seq_len) ** 0.5) | ||
assert w * w == seq_len, "seq_len must be a perfect square" | ||
|
||
rel_h = torch.empty( | ||
(batch, head, seq_len, w, 1), dtype=dtype, device=device | ||
).normal_(mean=0, std=0.5) | ||
rel_w = torch.empty( | ||
(batch, head, seq_len, 1, w), dtype=dtype, device=device | ||
).normal_(mean=0, std=0.5) | ||
|
||
tri_out = _attention_rel_h_rel_w(q, k, v, rel_h, rel_w) | ||
# reference implementation | ||
attn_bias = (rel_h + rel_w).view( | ||
q.size(0), q.size(1), rel_h.size(2), rel_h.size(3) * rel_w.size(4) | ||
) | ||
ref_out = torch.nn.functional.scaled_dot_product_attention( | ||
q, k, v, attn_mask=attn_bias | ||
) | ||
|
||
torch.testing.assert_close(ref_out, tri_out, rtol=1e-3, atol=1e-3) | ||
|
||
for batch, (head, seq_len), dtype in itertools.product([1, 8], [(16, 80), (12, 64)], [torch.float16, torch.bfloat16]): | ||
print(f"batch: {batch} head: {head} seq_len: {seq_len} dtype: {dtype}") | ||
test_op(batch, head, 4096, seq_len, dtype) |