-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into poetry-migrate
- Loading branch information
Showing
3 changed files
with
331 additions
and
26 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
# Copyright 2020 University of New South Wales, University of Sydney, Ingham Institute | ||
|
||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
|
||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import SimpleITK as sitk | ||
import pandas as pd | ||
|
||
|
||
def calculate_d_mean(dose_grid, label): | ||
"""Calculate the mean dose of a structure | ||
Args: | ||
dose_grid (SimpleITK.Image): The dose grid. | ||
label (SimpleITK.Image): The (binary) label defining a structure. | ||
Returns: | ||
float: The mean dose in Gy. | ||
""" | ||
|
||
dose_grid = sitk.Resample(dose_grid, label, sitk.Transform(), sitk.sitkLinear) | ||
dose_array = sitk.GetArrayFromImage(dose_grid) | ||
mask_array = sitk.GetArrayFromImage(label) | ||
|
||
return dose_array[mask_array > 0].mean() | ||
|
||
|
||
def calculate_d_max(dose_grid, label): | ||
"""Calculate the maximum dose of a structure | ||
Args: | ||
dose_grid (SimpleITK.Image): The dose grid. | ||
label (SimpleITK.Image): The (binary) label defining a structure. | ||
Returns: | ||
float: The maximum dose in Gy. | ||
""" | ||
|
||
dose_grid = sitk.Resample(dose_grid, label, sitk.Transform(), sitk.sitkLinear) | ||
dose_array = sitk.GetArrayFromImage(dose_grid) | ||
mask_array = sitk.GetArrayFromImage(label) | ||
|
||
return dose_array[mask_array > 0].max() | ||
|
||
|
||
def calculate_d_to_volume(dose_grid, label, volume, volume_in_cc=False): | ||
"""Calculate the dose to a (relative) volume of the label | ||
Args: | ||
dose_grid (SimpleITK.Image): The dose grid. | ||
label (SimpleITK.Image): The (binary) label defining a structure. | ||
volume (float): The relative volume in %. | ||
volume_in_cc (bool, optional): Whether the volume is in cc (versus percent). | ||
Defaults to False. | ||
Returns: | ||
float: The dose to volume ratio. | ||
""" | ||
|
||
dose_grid = sitk.Resample(dose_grid, label, sitk.Transform(), sitk.sitkLinear) | ||
dose_array = sitk.GetArrayFromImage(dose_grid) | ||
mask_array = sitk.GetArrayFromImage(label) | ||
|
||
if volume_in_cc: | ||
volume = (volume * 1000 / ((mask_array > 0).sum() * np.product(label.GetSpacing()))) * 100 | ||
|
||
if volume > 100: | ||
volume = 100 | ||
|
||
return np.percentile(dose_array[mask_array > 0], 100 - volume) | ||
|
||
|
||
def calculate_v_receiving_dose(dose_grid, label, dose_threshold, relative=True): | ||
"""Calculate the (relative) volume receiving a dose above a threshold | ||
Args: | ||
dose_grid (SimpleITK.Image): The dose grid. | ||
label (SimpleITK.Image): The (binary) label defining a structure. | ||
dose_threshold (float): The dose threshold in Gy. | ||
relative (bool, optional): If true results will be returned as relative volume, otherwise | ||
as volume in cc. Defaults to True. | ||
Returns: | ||
float: The (relative) volume receiving a dose above the threshold, as a percent. | ||
""" | ||
|
||
dose_grid = sitk.Resample(dose_grid, label, sitk.Transform(), sitk.sitkLinear) | ||
dose_array = sitk.GetArrayFromImage(dose_grid) | ||
mask_array = sitk.GetArrayFromImage(label) | ||
|
||
dose_array_masked = dose_array[mask_array > 0] | ||
|
||
num_voxels = (mask_array > 0).sum() | ||
|
||
relative_volume = (dose_array_masked >= dose_threshold).sum() / num_voxels * 100 | ||
if relative: | ||
return relative_volume | ||
|
||
total_volume = (mask_array > 0).sum() * np.product(label.GetSpacing()) / 1000 | ||
|
||
return relative_volume * total_volume | ||
|
||
|
||
def calculate_d_to_volume_for_labels(dose_grid, labels, volume, volume_in_cc=False): | ||
"""Calculate the dose which x percent of the volume receives for a set of labels | ||
Args: | ||
dose_grid (SimpleITK.Image): The dose grid. | ||
labels (dict): A Python dictionary containing the label name as key and the SimpleITK.Image | ||
binary mask as value. | ||
volume (float|list): The relative volume (or list of volumes) in %. | ||
volume_in_cc (bool, optional): Whether the volume is in cc (versus percent). | ||
Defaults to False. | ||
Returns: | ||
pandas.DataFrame: Data frame with a row for each label containing the metric and value. | ||
""" | ||
|
||
if not isinstance(volume, list): | ||
volume = [volume] | ||
|
||
metrics = [] | ||
for label in labels: | ||
|
||
m = {"label": label} | ||
|
||
for v in volume: | ||
col_name = f"D{v}" | ||
if volume_in_cc: | ||
col_name = f"D{v}cc" | ||
|
||
m[col_name] = calculate_d_to_volume( | ||
dose_grid, labels[label], v, volume_in_cc=volume_in_cc | ||
) | ||
|
||
metrics.append(m) | ||
|
||
return pd.DataFrame(metrics) | ||
|
||
|
||
def calculate_v_receiving_dose_for_labels(dose_grid, labels, dose_threshold, relative=True): | ||
"""Get the volume (in cc) which receives x dose for a set of labels | ||
Args: | ||
dose_grid (SimpleITK.Image): The dose grid. | ||
labels (SimpleITK.Image): The (binary) label defining a structure. | ||
dose_threshold (float|list): The dose threshold (or list of thresholds) in Gy. | ||
relative (bool, optional): If true results will be returned as relative volume, otherwise | ||
as volume in cc. Defaults to True. | ||
Returns: | ||
pandas.DataFrame: Data frame with a row for each label containing the metric and value. | ||
""" | ||
|
||
if not isinstance(dose_threshold, list): | ||
dose_threshold = [dose_threshold] | ||
|
||
metrics = [] | ||
for label in labels: | ||
|
||
m = {"label": label} | ||
|
||
for dt in dose_threshold: | ||
|
||
metric_name = f"V{dt}" | ||
if dt - int(dt) == 0: | ||
metric_name = f"V{int(dt)}" | ||
|
||
m[metric_name] = calculate_v_receiving_dose(dose_grid, labels[label], dt, relative) | ||
|
||
metrics.append(m) | ||
|
||
return pd.DataFrame(metrics) |
Oops, something went wrong.