Skip to content

Commit

Permalink
Merge branch 'develop' into gmos-tilted-slits
Browse files Browse the repository at this point in the history
  • Loading branch information
kbwestfall authored Jul 17, 2024
2 parents f01de16 + c60cb03 commit 27fe22b
Show file tree
Hide file tree
Showing 17 changed files with 264 additions and 92 deletions.
2 changes: 1 addition & 1 deletion doc/help/run_pypeit.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
usage: run_pypeit [-h] [-v VERBOSITY] [-r REDUX_PATH] [-m] [-s] [-o] [-c]
pypeit_file
## [1;37;42mPypeIt : The Python Spectroscopic Data Reduction Pipeline v1.16.1.dev84+g643dd5acc[0m
## [1;37;42mPypeIt : The Python Spectroscopic Data Reduction Pipeline v1.16.1.dev97+g2ab5988a9[0m
##
## Available spectrographs include:
## bok_bc, gemini_flamingos1, gemini_flamingos2, gemini_gmos_north_e2v,
Expand Down
2 changes: 2 additions & 0 deletions doc/releases/1.16.1dev.rst
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@ Installation Changes
Dependency Changes
------------------

- Support added for numpy>=2.0.0; numpy<=2.0.0 should still be supported

Functionality/Performance Improvements and Additions
----------------------------------------------------

Expand Down
80 changes: 80 additions & 0 deletions presentations/py/users.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
from matplotlib import pyplot, rc, dates
import matplotlib.dates as mdates
import matplotlib as mpl
mpl.rcParams['font.family'] = 'stixgeneral'

import numpy
from IPython import embed

def set_fontsize(ax, fsz):
"""
Set the fontsize throughout an Axis
Args:
ax (Matplotlib Axis):
fsz (float): Font size
Returns:
"""
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(fsz)

user_dates = ["2021-03-11", "2022-04-29", "2022-11-07", "2022-12-06", "2023-06-08", "2023-06-29", "2023-07-11", "2023-09-03", "2023-10-13", "2023-12-01", "2023-12-15", "2024-02-22", "2024-03-21", "2024-04-09", "2024-05-02", "2024-05-19", "2024-06-06", "2024-06-10"]
user_dates = numpy.array([numpy.datetime64(date) for date in user_dates])
user_number = numpy.array([125, 293, 390, 394, 477, 487, 506, 518, 531, 544, 551, 568, 579, 588, 596, 603, 616, 620])

user_pred_dates = numpy.array([numpy.datetime64(date)
for date in ["2024-06-10", "2024-12-31", "2025-12-31", "2026-12-31",
"2027-12-31"]])
user_pred_num = numpy.array([620, 620+0.5*160, 620+1.5*160, 620+2.5*160, 620+3.5*160])


cite_dates = ["2020-12-31", "2021-12-31", "2022-12-31", "2023-12-31", "2024-06-10"]
cite_dates = numpy.array([numpy.datetime64(date) for date in cite_dates])
cite_ref = numpy.cumsum([7, 24, 31, 56, 53])
cite_all = numpy.cumsum([8, 25, 33, 68, 81])

cite_pred_dates = numpy.array([numpy.datetime64(date)
for date in ["2024-06-10", "2024-12-31", "2025-12-31", "2026-12-31", "2027-12-31"]])
cite_pred_all = numpy.cumsum([8, 25, 33, 68, 81, numpy.sqrt(1.5)*81, 1.5*68, 1.5**2*68, 1.5**3*68])
cite_pred_all = cite_pred_all[cite_all.size-1:]

rc('font', size=14)

w,h = pyplot.figaspect(1)
fig = pyplot.figure(figsize=(1.9*w,1.5*h))

ax = fig.add_axes([0.2, 0.2, 0.75, 0.75])
ax.plot(user_dates, user_number, ls='-', color='k', label='Slack Users')
ax.plot(user_pred_dates, user_pred_num, ls=':', color='k')
ax.set_ylim([0,1400])
ax.set_ylabel("Cumulative Usage Metric")
ax.set_xlabel("Date")
ax.xaxis.set_major_locator(dates.MonthLocator(bymonth=[1,7]))
fig.autofmt_xdate()

#axt = ax.twinx()
#ax.plot(cite_dates, cite_ref, ls='--', color='0.5', label='All Cite')
ax.plot(cite_dates, cite_all, ls='-', color='C0', label='Citations')
ax.plot(cite_pred_dates, cite_pred_all, ls=':', color='C0')
#axt.set_ylim([0,250])

#ax.scatter(user_dates, user_number, marker='.', lw=0, s=200, color='k')
#fig.canvas.print_figure('pypeit_users.pdf', bbox_inches='tight')

ax.legend()

ax.xaxis.set_major_locator(mdates.YearLocator())

set_fontsize(ax, 16)


outfile = "pypeit_users.png"
pyplot.savefig(outfile, dpi=300)
print(f"Saved: {outfile}")

#pyplot.show()
#fig.clear()
#pyplot.close(fig)
17 changes: 13 additions & 4 deletions pypeit/cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,13 +63,22 @@
def git_branch():
"""
Return the name/hash of the currently checked out branch
Returns:
:obj:`str`: Branch name or hash
:obj:`str`: Branch name or hash. Defaults to "develop" if PypeIt is not currently in a repository
or pygit2 is inot installed.
"""
if Repository is None:
if Repository is not None:
try:
repo = Repository(resources.files('pypeit'))
except Exception as e:
# PypeIt not in a git repo
repo = None

if Repository is None or repo is None:
return 'develop' if '.dev' in __version__ else __version__
repo = Repository(resources.files('pypeit'))

return str(repo.head.target) if repo.head_is_detached else str(repo.head.shorthand)


Expand Down
111 changes: 62 additions & 49 deletions pypeit/core/findobj_skymask.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,57 +66,68 @@ def create_skymask(sobjs, thismask, slit_left, slit_righ, box_rad_pix=None, trim
global sky subtraction (True means the pixel is usable for sky
subtraction, False means it should be masked when subtracting sky).
"""
# Number of objects
nobj = len(sobjs)
ximg, _ = pixels.ximg_and_edgemask(slit_left, slit_righ, thismask, trim_edg=trim_edg)
# How many pixels wide is the slit at each Y?
xsize = slit_righ - slit_left
#nsamp = np.ceil(np.median(xsize)) # JFH Changed 07-07-19
nsamp = np.ceil(xsize.max())
if nobj == 0:
msgs.info('No objects were detected. The entire slit will be used for sky subtraction.')
return thismask[thismask]

# Objmask
# Compute the object mask
skymask_objsnr = np.copy(thismask)
if nobj == 0:
msgs.info('No objects were detected. The entire slit will be used to determine the sky subtraction.')
else:
# Compute some inputs for the object mask
xtmp = (np.arange(nsamp) + 0.5)/nsamp
# threshold for object finding
for iobj in range(nobj):
# this will skip also sobjs with THRESHOLD=0, because are the same that have smash_snr=0.
if (sobjs[iobj].smash_snr != 0.) and (sobjs[iobj].smash_snr != None):
qobj = np.zeros_like(xtmp)
sep = np.abs(xtmp-sobjs[iobj].SPAT_FRACPOS)
sep_inc = sobjs[iobj].maskwidth/nsamp
close = sep <= sep_inc
# This is an analytical SNR profile with a Gaussian shape.
# JFH modified to use SNR here instead of smash peakflux. I believe that the 2.77 is supposed to be
# 2.355**2/2, i.e. the argument of a gaussian with sigma = FWHM/2.35
qobj[close] = sobjs[iobj].smash_snr * \
np.exp(np.fmax(-2.77*(sep[close]*nsamp)**2/sobjs[iobj].FWHM**2, -9.0))
skymask_objsnr[thismask] &= np.interp(ximg[thismask], xtmp, qobj) < skymask_snr_thresh
# FWHM
# Create an image with pixel values equal to the fraction of the spatial
# position along the slit, ranging from 0 -> 1
ximg, _ = pixels.ximg_and_edgemask(slit_left, slit_righ, thismask, trim_edg=trim_edg)
# Maximum spatial width rounded up
nsamp = np.ceil(np.amax(slit_righ - slit_left))
# Fractional position within the maximum spatial width
xtmp = (np.arange(nsamp) + 0.5)/nsamp
# threshold for object finding
for iobj in range(nobj):
# this will skip also sobjs with THRESHOLD=0, because are the same that have smash_snr=0.
if sobjs[iobj].smash_snr is None or sobjs[iobj].smash_snr <= 0.:
continue
# Select pixels within the defined width of the object
sep = np.absolute(xtmp-sobjs[iobj].SPAT_FRACPOS)
sep_inc = sobjs[iobj].maskwidth/nsamp
close = sep <= sep_inc
# This is an analytical SNR profile with a Gaussian shape.
# JFH modified to use SNR here instead of smash peakflux. I believe that
# the 2.77 is supposed to be 2.355**2/2, i.e. the argument of a gaussian
# with sigma = FWHM/2.35
qobj = np.zeros_like(xtmp)
qobj[close] = sobjs[iobj].smash_snr * \
np.exp(np.fmax(-2.77*(sep[close]*nsamp)**2/sobjs[iobj].FWHM**2, -9.0))
skymask_objsnr[thismask] &= np.interp(ximg[thismask], xtmp, qobj) < skymask_snr_thresh

# Compute the FWHM mask
skymask_fwhm = np.copy(thismask)
if nobj > 0:
nspec, nspat = thismask.shape
# spatial position everywhere along image
spat_img = np.outer(np.ones(nspec, dtype=int),np.arange(nspat, dtype=int))
# Boxcar radius?
if box_rad_pix is not None:
msgs.info("Using boxcar radius for masking")
# Loop me
for iobj in range(nobj):
# Create a mask for the pixels that will contribute to the object
skymask_radius = box_rad_pix if box_rad_pix is not None else sobjs[iobj].FWHM
msgs.info(f"Masking around object {iobj+1} within a radius = {skymask_radius} pixels")
slit_img = np.outer(sobjs[iobj].TRACE_SPAT, np.ones(nspat)) # central trace replicated spatially
objmask_now = thismask & (spat_img > (slit_img - skymask_radius)) & (spat_img < (slit_img + skymask_radius))
skymask_fwhm &= np.invert(objmask_now)

# Check that we have not performed too much masking
if (np.sum(skymask_fwhm)/np.sum(thismask) < 0.10):
msgs.warn('More than 90% of usable area on this slit would be masked and not used by global sky subtraction. '
'Something is probably wrong with object finding for this slit. Not masking object for global sky subtraction.')
skymask_fwhm = np.copy(thismask)
nspec, nspat = thismask.shape
# spatial position everywhere along image
# spat_img = np.outer(np.ones(nspec, dtype=int),np.arange(nspat, dtype=int))
spat_img = np.tile(np.arange(nspat, dtype=int), (nspec,1))
# Boxcar radius?
if box_rad_pix is not None:
msgs.info("Using boxcar radius for masking")
# Loop me
for iobj in range(nobj):
# Create a mask for the pixels that will contribute to the object
skymask_radius = box_rad_pix if box_rad_pix is not None else sobjs[iobj].FWHM
msgs.info(f"Masking around object {iobj+1} within a radius = {skymask_radius} pixels")
# slit_img = np.outer(sobjs[iobj].TRACE_SPAT, np.ones(nspat)) # central trace replicated spatially
slit_img = np.tile(sobjs[iobj].TRACE_SPAT, (nspat,1)).T
objmask_now = thismask \
& (spat_img > slit_img - skymask_radius) \
& (spat_img < slit_img + skymask_radius)
skymask_fwhm &= np.logical_not(objmask_now)

# Check that we have not performed too much masking
# TODO: There is this hard-coded check here, and then there is a similar
# check in skysub.global_skysub. Do we need both?
if np.sum(skymask_fwhm)/np.sum(thismask) < 0.10:
msgs.warn('More than 90% of usable area on this slit would be masked and not used by '
'global sky subtraction. Something is probably wrong with object finding for '
'this slit. Not masking object for global sky subtraction.')
skymask_fwhm = np.copy(thismask)

# Still have to make the skymask
# # TODO -- Make sure this is right
Expand All @@ -135,8 +146,10 @@ def create_skymask(sobjs, thismask, slit_left, slit_righ, box_rad_pix=None, trim
# computation from objs_in_slit is not necessarily that reliable and when large amounts of masking are performed
# on narrow slits/orders, we have problems. We should revisit this after object finding is refactored since
# maybe then the fwhm estimates will be more robust.
if box_rad_pix is None and np.all([sobj.smash_snr is not None for sobj in sobjs]) \
and np.all([sobj.smash_snr != 0. for sobj in sobjs]) and not np.all(skymask_objsnr == thismask):
if box_rad_pix is None \
and np.all([sobj.smash_snr is not None for sobj in sobjs]) \
and np.all([sobj.smash_snr != 0. for sobj in sobjs]) \
and not np.all(skymask_objsnr == thismask):
# TODO This is a kludge until we refactor this routine. Basically mask design objects that are not auto-ID
# always have smash_snr undefined. If there is a hybrid situation of auto-ID and maskdesign, the logic
# here does not really make sense. Soution would be to compute thershold and smash_snr for all objects.
Expand Down
2 changes: 1 addition & 1 deletion pypeit/core/flux_calib.py
Original file line number Diff line number Diff line change
Expand Up @@ -411,7 +411,7 @@ def get_standard_spectrum(star_type=None, star_mag=None, ra=None, dec=None):
# Pull star spectral model from archive
msgs.info("Getting archival standard spectrum")
# Grab closest standard within a tolerance
std_dict = find_standard_file(ra, dec)
std_dict = find_standard_file(ra, dec,to_pkg='symlink')

elif (star_mag is not None) and (star_type is not None):
## using vega spectrum
Expand Down
9 changes: 6 additions & 3 deletions pypeit/core/skysub.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,11 +136,14 @@ def global_skysub(image, ivar, tilts, thismask, slit_left, slit_righ, inmask=Non
msgs.error("Type of inmask should be bool and is of type: {:}".format(inmask.dtype))

# Sky pixels for fitting
gpm = thismask & (ivar > 0.0) & inmask & np.logical_not(edgmask) & np.isfinite(image) & np.isfinite(ivar)
gpm = thismask & (ivar > 0.0) & inmask & np.logical_not(edgmask) \
& np.isfinite(image) & np.isfinite(ivar)
bad_pixel_frac = np.sum(thismask & np.logical_not(gpm))/np.sum(thismask)
if bad_pixel_frac > max_mask_frac:
msgs.warn('This slit/order has {:5.3f}% of the pixels masked, which exceeds the threshold of {:f}%. '.format(100.0*bad_pixel_frac, 100.0*max_mask_frac)
+ msgs.newline() + 'There is likely a problem with this slit. Giving up on global sky-subtraction.')
msgs.warn(f'This slit/order has {100.0*bad_pixel_frac:.3f}% of the pixels masked, which '
f'exceeds the threshold of {100.0*max_mask_frac:.3f}%.'
+ msgs.newline() + 'There is likely a problem with this slit. Giving up on '
'global sky-subtraction.')
return np.zeros(np.sum(thismask))

# Sub arrays
Expand Down
2 changes: 1 addition & 1 deletion pypeit/core/wavecal/autoid.py
Original file line number Diff line number Diff line change
Expand Up @@ -3189,7 +3189,7 @@ def finalize_fit(self, detections):
if self._outroot is not None:
# Write IDs
out_dict = dict(pix=use_tcent, IDs=self._all_patt_dict[str(slit)]['IDs'])
jdict = ltu.jsonify(out_dict)
jdict = utils.jsonify(out_dict)
ltu.savejson(self._outroot + slittxt + '.json', jdict, easy_to_read=True, overwrite=True)
msgs.info("Wrote: {:s}".format(self._outroot + slittxt + '.json'))

Expand Down
44 changes: 23 additions & 21 deletions pypeit/find_objects.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,28 +253,29 @@ def create_skymask(self, sobjs_obj):
subtraction. True = usable for sky subtraction, False = should be
masked when sky subtracting.
"""
# Masking options
boxcar_rad_pix = None

# Instantiate the mask
skymask = np.ones_like(self.sciImg.image, dtype=bool)
gdslits = np.where(np.invert(self.reduce_bpm))[0]
if sobjs_obj.nobj > 0:
for slit_idx in gdslits:
slit_spat = self.slits.spat_id[slit_idx]
qa_title ="Generating skymask for slit # {:d}".format(slit_spat)
msgs.info(qa_title)
thismask = self.slitmask == slit_spat
this_sobjs = sobjs_obj.SLITID == slit_spat
# Boxcar mask?
if self.par['reduce']['skysub']['mask_by_boxcar']:
boxcar_rad_pix = self.par['reduce']['extraction']['boxcar_radius'] / \
self.get_platescale(slitord_id=self.slits.slitord_id[slit_idx])
# Do it
skymask[thismask] = findobj_skymask.create_skymask(sobjs_obj[this_sobjs], thismask,
self.slits_left[:,slit_idx],
self.slits_right[:,slit_idx],
box_rad_pix=boxcar_rad_pix,
trim_edg=self.par['reduce']['findobj']['find_trim_edge'])
if sobjs_obj.nobj == 0:
# No objects found, so entire image contains sky
return skymask

# Build the mask for each slit
boxcar_rad_pix = None
gdslits = np.where(np.logical_not(self.reduce_bpm))[0]
for slit_idx in gdslits:
slit_spat = self.slits.spat_id[slit_idx]
msgs.info(f'Generating skymask for slit # {slit_spat}')
thismask = self.slitmask == slit_spat
this_sobjs = sobjs_obj.SLITID == slit_spat
# Boxcar mask?
if self.par['reduce']['skysub']['mask_by_boxcar']:
boxcar_rad_pix = self.par['reduce']['extraction']['boxcar_radius'] / \
self.get_platescale(slitord_id=self.slits.slitord_id[slit_idx])
# Do it
skymask[thismask] = findobj_skymask.create_skymask(
sobjs_obj[this_sobjs], thismask, self.slits_left[:,slit_idx],
self.slits_right[:,slit_idx], box_rad_pix=boxcar_rad_pix,
trim_edg=self.par['reduce']['findobj']['find_trim_edge'])
# Return
return skymask

Expand Down Expand Up @@ -592,6 +593,7 @@ def global_skysub(self, skymask=None, bkg_redux_sciimg=None,
pos_mask=not self.bkg_redux and not objs_not_masked,
max_mask_frac=self.par['reduce']['skysub']['max_mask_frac'],
show_fit=show_fit)

# Mask if something went wrong
if np.sum(global_sky[thismask]) == 0.:
msgs.warn("Bad fit to sky. Rejecting slit: {:d}".format(slit_spat))
Expand Down
8 changes: 4 additions & 4 deletions pypeit/images/buildimage.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,8 +157,8 @@ def construct_file_name(cls, calib_key, calib_dir=None, basename=None):


def buildimage_fromlist(spectrograph, det, frame_par, file_list, bias=None, bpm=None, dark=None,
scattlight=None, flatimages=None, maxiters=5, ignore_saturation=True, slits=None,
mosaic=None, calib_dir=None, setup=None, calib_id=None):
scattlight=None, flatimages=None, maxiters=5, ignore_saturation=True,
slits=None, mosaic=None, calib_dir=None, setup=None, calib_id=None):
"""
Perform basic image processing on a list of images and combine the results.
Expand Down Expand Up @@ -249,8 +249,8 @@ def buildimage_fromlist(spectrograph, det, frame_par, file_list, bias=None, bpm=

# Do it
combineImage = combineimage.CombineImage(spectrograph, det, frame_par['process'], file_list)
pypeitImage = combineImage.run(bias=bias, bpm=bpm, dark=dark, flatimages=flatimages, scattlight=scattlight,
sigma_clip=frame_par['process']['clip'],
pypeitImage = combineImage.run(bias=bias, bpm=bpm, dark=dark, flatimages=flatimages,
scattlight=scattlight, sigma_clip=frame_par['process']['clip'],
sigrej=frame_par['process']['comb_sigrej'],
maxiters=maxiters, ignore_saturation=ignore_saturation,
slits=slits, combine_method=frame_par['process']['combine'],
Expand Down
2 changes: 1 addition & 1 deletion pypeit/metadata.py
Original file line number Diff line number Diff line change
Expand Up @@ -747,7 +747,7 @@ def unique_configurations(self, force=False, copy=False, rm_none=False):
ignore_frames, ignore_indx = self.ignore_frames()
# Find the indices of the frames not to ignore
indx = np.arange(len(self.table))
indx = indx[np.logical_not(np.in1d(indx, ignore_indx))]
indx = indx[np.logical_not(np.isin(indx, ignore_indx))]

if len(indx) == 0:
msgs.error('No frames to use to define configurations!')
Expand Down
2 changes: 1 addition & 1 deletion pypeit/par/parset.py
Original file line number Diff line number Diff line change
Expand Up @@ -345,7 +345,7 @@ def _data_table_string(data_table, delimeter='print'):
return '\n'.join(row_string)+'\n'

@staticmethod
def _data_string(data, use_repr=True, verbatim=False):
def _data_string(data, use_repr=False, verbatim=False):
"""
Convert a single datum into a string
Expand Down
Loading

0 comments on commit 27fe22b

Please sign in to comment.