Skip to content

Commit

Permalink
Add Numba implementation of Blockwise
Browse files Browse the repository at this point in the history
  • Loading branch information
ricardoV94 committed Nov 26, 2024
1 parent 2e02856 commit ad15c54
Show file tree
Hide file tree
Showing 8 changed files with 271 additions and 6 deletions.
9 changes: 5 additions & 4 deletions pytensor/link/numba/dispatch/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,16 @@
from pytensor.link.numba.dispatch.basic import numba_funcify, numba_typify

# Load dispatch specializations
import pytensor.link.numba.dispatch.scalar
import pytensor.link.numba.dispatch.tensor_basic
import pytensor.link.numba.dispatch.blockwise
import pytensor.link.numba.dispatch.elemwise
import pytensor.link.numba.dispatch.extra_ops
import pytensor.link.numba.dispatch.nlinalg
import pytensor.link.numba.dispatch.random
import pytensor.link.numba.dispatch.elemwise
import pytensor.link.numba.dispatch.scan
import pytensor.link.numba.dispatch.sparse
import pytensor.link.numba.dispatch.scalar
import pytensor.link.numba.dispatch.slinalg
import pytensor.link.numba.dispatch.sparse
import pytensor.link.numba.dispatch.subtensor
import pytensor.link.numba.dispatch.tensor_basic

# isort: on
88 changes: 88 additions & 0 deletions pytensor/link/numba/dispatch/blockwise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
from typing import cast

from numba.core.extending import overload
from numba.np.unsafe.ndarray import to_fixed_tuple

from pytensor.link.numba.dispatch.basic import numba_funcify, numba_njit
from pytensor.link.numba.dispatch.vectorize_codegen import (
_jit_options,
_vectorized,
encode_literals,
store_core_outputs,
)
from pytensor.link.utils import compile_function_src
from pytensor.tensor import TensorVariable, get_vector_length
from pytensor.tensor.blockwise import Blockwise, BlockwiseWithCoreShape


@numba_funcify.register
def numba_funcify_Blockwise(op: BlockwiseWithCoreShape, node, **kwargs):
[blockwise_node] = op.fgraph.apply_nodes
blockwise_op: Blockwise = blockwise_node.op
core_op = blockwise_op.core_op
nin = len(blockwise_node.inputs)
nout = len(blockwise_node.outputs)
core_shapes_len = tuple(get_vector_length(sh) for sh in node.inputs[nin:])

core_node = blockwise_op._create_dummy_core_node(
cast(tuple[TensorVariable], blockwise_node.inputs)
)
core_op_fn = numba_funcify(
core_op,
node=core_node,
parent_node=node,
fastmath=_jit_options["fastmath"],
**kwargs,
)
core_op_fn = store_core_outputs(core_op_fn, nin=nin, nout=nout)

batch_ndim = blockwise_op.batch_ndim(node)

# numba doesn't support nested literals right now...
input_bc_patterns = encode_literals(
tuple(inp.type.broadcastable[:batch_ndim] for inp in node.inputs[:nin])
)
output_bc_patterns = encode_literals(
tuple(out.type.broadcastable[:batch_ndim] for out in node.outputs)
)
output_dtypes = encode_literals(tuple(out.type.dtype for out in node.outputs))
inplace_pattern = encode_literals(())

# Numba does not allow a tuple generator in the Jitted function so we have to compile a helper to convert core_shapes into tuples
# Alternatively, add an Op that converts shape vectors into tuples, like we did for JAX
src = "def to_tuple(core_shapes): return ("
for i in range(nout):
src += f"to_fixed_tuple(core_shapes[{i}], {core_shapes_len[i]}),"
src += ")"

to_tuple = numba_njit(
compile_function_src(
src,
"to_tuple",
global_env={"to_fixed_tuple": to_fixed_tuple},
)
)

def blockwise_wrapper(*inputs_and_core_shapes):
inputs, core_shapes = inputs_and_core_shapes[:nin], inputs_and_core_shapes[nin:]
tuple_core_shapes = to_tuple(core_shapes)
return _vectorized(
core_op_fn,
input_bc_patterns,
output_bc_patterns,
output_dtypes,
inplace_pattern,
(), # constant_inputs
inputs,
tuple_core_shapes,
None, # size
)

def blockwise(*inputs_and_core_shapes):
raise NotImplementedError("Non-jitted BlockwiseWithCoreShape not implemented")

@overload(blockwise, jit_options=_jit_options)
def ov_blockwise(*inputs_and_core_shapes):
return blockwise_wrapper

return blockwise
2 changes: 1 addition & 1 deletion pytensor/link/numba/dispatch/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@ def random_wrapper(core_shape, rng, size, *dist_params):
return rng, draws

def random(core_shape, rng, size, *dist_params):
pass
raise NotImplementedError("Non-jitted random variable not implemented")

@overload(random, jit_options=_jit_options)
def ov_random(core_shape, rng, size, *dist_params):
Expand Down
8 changes: 8 additions & 0 deletions pytensor/tensor/blockwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -441,3 +441,11 @@ def vectorize_node_fallback(op: Op, node: Apply, *bached_inputs) -> Apply:

class OpWithCoreShape(OpFromGraph):
"""Generalizes an `Op` to include core shape as an additional input."""


class BlockwiseWithCoreShape(OpWithCoreShape):
"""Generalizes a Blockwise `Op` to include a core shape parameter."""

def __str__(self):
[blockwise_node] = self.fgraph.apply_nodes
return f"[{blockwise_node.op!s}]"
1 change: 1 addition & 0 deletions pytensor/tensor/rewriting/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import pytensor.tensor.rewriting.jax
import pytensor.tensor.rewriting.linalg
import pytensor.tensor.rewriting.math
import pytensor.tensor.rewriting.numba
import pytensor.tensor.rewriting.ofg
import pytensor.tensor.rewriting.shape
import pytensor.tensor.rewriting.special
Expand Down
108 changes: 108 additions & 0 deletions pytensor/tensor/rewriting/numba.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
from pytensor.compile import optdb
from pytensor.graph import node_rewriter
from pytensor.graph.basic import applys_between
from pytensor.graph.rewriting.basic import out2in
from pytensor.tensor.basic import as_tensor, constant
from pytensor.tensor.blockwise import Blockwise, BlockwiseWithCoreShape
from pytensor.tensor.rewriting.shape import ShapeFeature


@node_rewriter([Blockwise])
def introduce_explicit_core_shape_blockwise(fgraph, node):
"""Introduce the core shape of a Blockwise.
We wrap Blockwise graphs into a BlockwiseWithCoreShape OpFromGraph
that has an extra "non-functional" input that represents the core shape of the Blockwise variable.
This core_shape is used by the numba backend to pre-allocate the output array.
If available, the core shape is extracted from the shape feature of the graph,
which has a higher change of having been simplified, optimized, constant-folded.
If missing, we fall back to the op._supp_shape_from_params method.
This rewrite is required for the numba backend implementation of Blockwise.
Example
-------
.. code-block:: python
import pytensor
import pytensor.tensor as pt
x = pt.tensor("x", shape=(5, None, None))
outs = pt.linalg.svd(x, compute_uv=True)
pytensor.dprint(outs)
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.0 [id A]
# └─ x [id B]
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.1 [id A]
# └─ ···
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.2 [id A]
# └─ ···
# After the rewrite, note the new 3 core shape inputs
fn = pytensor.function([x], outs, mode="NUMBA")
fn.dprint(print_type=False)
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].0 [id A] 6
# ├─ x [id B]
# ├─ MakeVector{dtype='int64'} [id C] 5
# │ ├─ Shape_i{1} [id D] 2
# │ │ └─ x [id B]
# │ └─ Shape_i{1} [id D] 2
# │ └─ ···
# ├─ MakeVector{dtype='int64'} [id E] 4
# │ └─ Minimum [id F] 3
# │ ├─ Shape_i{1} [id D] 2
# │ │ └─ ···
# │ └─ Shape_i{2} [id G] 0
# │ └─ x [id B]
# └─ MakeVector{dtype='int64'} [id H] 1
# ├─ Shape_i{2} [id G] 0
# │ └─ ···
# └─ Shape_i{2} [id G] 0
# └─ ···
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].1 [id A] 6
# └─ ···
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].2 [id A] 6
# └─ ···
"""
op: Blockwise = node.op # type: ignore[annotation-unchecked]
batch_ndim = op.batch_ndim(node)

shape_feature: ShapeFeature | None = getattr(fgraph, "shape_feature", None) # type: ignore[annotation-unchecked]
if shape_feature:
core_shapes = [
[shape_feature.get_shape(out, i) for i in range(batch_ndim, out.type.ndim)]
for out in node.outputs
]
else:
input_shapes = [tuple(inp.shape) for inp in node.inputs]
core_shapes = [
out_shape[batch_ndim:]
for out_shape in op.infer_shape(None, node, input_shapes)
]

core_shapes = [
as_tensor(core_shape) if len(core_shape) else constant([], dtype="int64")
for core_shape in core_shapes
]

if any(
isinstance(node.op, Blockwise)
for node in applys_between(node.inputs, core_shapes)
):
# If Blockwise shows up in the shape graph we can't introduce the core shape
return None

return BlockwiseWithCoreShape(
[*node.inputs, *core_shapes],
node.outputs,
destroy_map=op.destroy_map,
)(*node.inputs, *core_shapes, return_list=True)


optdb.register(
introduce_explicit_core_shape_blockwise.__name__,
out2in(introduce_explicit_core_shape_blockwise),
"numba",
position=100,
)
2 changes: 1 addition & 1 deletion tests/link/numba/test_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,7 @@ def compare_numba_and_py(
Parameters
----------
fgraph
`FunctionGraph` or inputs to compare.
`FunctionGraph` or tuple(inputs, outputs) to compare.
inputs
Numeric inputs to be passed to the compiled graphs.
assert_fn
Expand Down
59 changes: 59 additions & 0 deletions tests/link/numba/test_blockwise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import numpy as np
import pytest

from pytensor import function
from pytensor.tensor import tensor
from pytensor.tensor.basic import ARange
from pytensor.tensor.blockwise import Blockwise
from pytensor.tensor.nlinalg import SVD, Det
from pytensor.tensor.slinalg import Cholesky, cholesky
from tests.link.numba.test_basic import compare_numba_and_py, numba_mode


# Fails if object mode warning is issued when not expected
pytestmark = pytest.mark.filterwarnings("error")


@pytest.mark.parametrize("shape_opt", [True, False], ids=str)
@pytest.mark.parametrize("core_op", [Det(), Cholesky(), SVD(compute_uv=True)], ids=str)
def test_blockwise(core_op, shape_opt):
x = tensor(shape=(5, None, None))
outs = Blockwise(core_op=core_op)(x, return_list=True)

mode = (
numba_mode.including("ShapeOpt")
if shape_opt
else numba_mode.excluding("ShapeOpt")
)
x_test = np.eye(3) * np.arange(1, 6)[:, None, None]
compare_numba_and_py(
([x], outs),
[x_test],
numba_mode=mode,
eval_obj_mode=False,
)


def test_non_square_blockwise():
"""Test that Op that cannot always be blockwised at runtime fails gracefully."""
x = tensor(shape=(3,), dtype="int64")
out = Blockwise(core_op=ARange(dtype="int64"), signature="(),(),()->(a)")(0, x, 1)

with pytest.warns(UserWarning, match="Numba will use object mode"):
fn = function([x], out, mode="NUMBA")

np.testing.assert_allclose(fn([5, 5, 5]), np.broadcast_to(np.arange(5), (3, 5)))

with pytest.raises(ValueError):
fn([3, 4, 5])


def test_blockwise_benchmark(benchmark):
x = tensor(shape=(5, 3, 3))
out = cholesky(x)
assert isinstance(out.owner.op, Blockwise)

fn = function([x], out, mode="NUMBA")
x_test = np.eye(3) * np.arange(1, 6)[:, None, None]
fn(x_test) # JIT compile
benchmark(fn, x_test)

0 comments on commit ad15c54

Please sign in to comment.