-
Notifications
You must be signed in to change notification settings - Fork 115
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Numba implementation of Blockwise
- Loading branch information
1 parent
2e02856
commit ad15c54
Showing
8 changed files
with
271 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
from typing import cast | ||
|
||
from numba.core.extending import overload | ||
from numba.np.unsafe.ndarray import to_fixed_tuple | ||
|
||
from pytensor.link.numba.dispatch.basic import numba_funcify, numba_njit | ||
from pytensor.link.numba.dispatch.vectorize_codegen import ( | ||
_jit_options, | ||
_vectorized, | ||
encode_literals, | ||
store_core_outputs, | ||
) | ||
from pytensor.link.utils import compile_function_src | ||
from pytensor.tensor import TensorVariable, get_vector_length | ||
from pytensor.tensor.blockwise import Blockwise, BlockwiseWithCoreShape | ||
|
||
|
||
@numba_funcify.register | ||
def numba_funcify_Blockwise(op: BlockwiseWithCoreShape, node, **kwargs): | ||
[blockwise_node] = op.fgraph.apply_nodes | ||
blockwise_op: Blockwise = blockwise_node.op | ||
core_op = blockwise_op.core_op | ||
nin = len(blockwise_node.inputs) | ||
nout = len(blockwise_node.outputs) | ||
core_shapes_len = tuple(get_vector_length(sh) for sh in node.inputs[nin:]) | ||
|
||
core_node = blockwise_op._create_dummy_core_node( | ||
cast(tuple[TensorVariable], blockwise_node.inputs) | ||
) | ||
core_op_fn = numba_funcify( | ||
core_op, | ||
node=core_node, | ||
parent_node=node, | ||
fastmath=_jit_options["fastmath"], | ||
**kwargs, | ||
) | ||
core_op_fn = store_core_outputs(core_op_fn, nin=nin, nout=nout) | ||
|
||
batch_ndim = blockwise_op.batch_ndim(node) | ||
|
||
# numba doesn't support nested literals right now... | ||
input_bc_patterns = encode_literals( | ||
tuple(inp.type.broadcastable[:batch_ndim] for inp in node.inputs[:nin]) | ||
) | ||
output_bc_patterns = encode_literals( | ||
tuple(out.type.broadcastable[:batch_ndim] for out in node.outputs) | ||
) | ||
output_dtypes = encode_literals(tuple(out.type.dtype for out in node.outputs)) | ||
inplace_pattern = encode_literals(()) | ||
|
||
# Numba does not allow a tuple generator in the Jitted function so we have to compile a helper to convert core_shapes into tuples | ||
# Alternatively, add an Op that converts shape vectors into tuples, like we did for JAX | ||
src = "def to_tuple(core_shapes): return (" | ||
for i in range(nout): | ||
src += f"to_fixed_tuple(core_shapes[{i}], {core_shapes_len[i]})," | ||
src += ")" | ||
|
||
to_tuple = numba_njit( | ||
compile_function_src( | ||
src, | ||
"to_tuple", | ||
global_env={"to_fixed_tuple": to_fixed_tuple}, | ||
) | ||
) | ||
|
||
def blockwise_wrapper(*inputs_and_core_shapes): | ||
inputs, core_shapes = inputs_and_core_shapes[:nin], inputs_and_core_shapes[nin:] | ||
tuple_core_shapes = to_tuple(core_shapes) | ||
return _vectorized( | ||
core_op_fn, | ||
input_bc_patterns, | ||
output_bc_patterns, | ||
output_dtypes, | ||
inplace_pattern, | ||
(), # constant_inputs | ||
inputs, | ||
tuple_core_shapes, | ||
None, # size | ||
) | ||
|
||
def blockwise(*inputs_and_core_shapes): | ||
raise NotImplementedError("Non-jitted BlockwiseWithCoreShape not implemented") | ||
|
||
@overload(blockwise, jit_options=_jit_options) | ||
def ov_blockwise(*inputs_and_core_shapes): | ||
return blockwise_wrapper | ||
|
||
return blockwise |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
from pytensor.compile import optdb | ||
from pytensor.graph import node_rewriter | ||
from pytensor.graph.basic import applys_between | ||
from pytensor.graph.rewriting.basic import out2in | ||
from pytensor.tensor.basic import as_tensor, constant | ||
from pytensor.tensor.blockwise import Blockwise, BlockwiseWithCoreShape | ||
from pytensor.tensor.rewriting.shape import ShapeFeature | ||
|
||
|
||
@node_rewriter([Blockwise]) | ||
def introduce_explicit_core_shape_blockwise(fgraph, node): | ||
"""Introduce the core shape of a Blockwise. | ||
We wrap Blockwise graphs into a BlockwiseWithCoreShape OpFromGraph | ||
that has an extra "non-functional" input that represents the core shape of the Blockwise variable. | ||
This core_shape is used by the numba backend to pre-allocate the output array. | ||
If available, the core shape is extracted from the shape feature of the graph, | ||
which has a higher change of having been simplified, optimized, constant-folded. | ||
If missing, we fall back to the op._supp_shape_from_params method. | ||
This rewrite is required for the numba backend implementation of Blockwise. | ||
Example | ||
------- | ||
.. code-block:: python | ||
import pytensor | ||
import pytensor.tensor as pt | ||
x = pt.tensor("x", shape=(5, None, None)) | ||
outs = pt.linalg.svd(x, compute_uv=True) | ||
pytensor.dprint(outs) | ||
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.0 [id A] | ||
# └─ x [id B] | ||
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.1 [id A] | ||
# └─ ··· | ||
# Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}.2 [id A] | ||
# └─ ··· | ||
# After the rewrite, note the new 3 core shape inputs | ||
fn = pytensor.function([x], outs, mode="NUMBA") | ||
fn.dprint(print_type=False) | ||
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].0 [id A] 6 | ||
# ├─ x [id B] | ||
# ├─ MakeVector{dtype='int64'} [id C] 5 | ||
# │ ├─ Shape_i{1} [id D] 2 | ||
# │ │ └─ x [id B] | ||
# │ └─ Shape_i{1} [id D] 2 | ||
# │ └─ ··· | ||
# ├─ MakeVector{dtype='int64'} [id E] 4 | ||
# │ └─ Minimum [id F] 3 | ||
# │ ├─ Shape_i{1} [id D] 2 | ||
# │ │ └─ ··· | ||
# │ └─ Shape_i{2} [id G] 0 | ||
# │ └─ x [id B] | ||
# └─ MakeVector{dtype='int64'} [id H] 1 | ||
# ├─ Shape_i{2} [id G] 0 | ||
# │ └─ ··· | ||
# └─ Shape_i{2} [id G] 0 | ||
# └─ ··· | ||
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].1 [id A] 6 | ||
# └─ ··· | ||
# [Blockwise{SVD{full_matrices=True, compute_uv=True}, (m,n)->(m,m),(k),(n,n)}].2 [id A] 6 | ||
# └─ ··· | ||
""" | ||
op: Blockwise = node.op # type: ignore[annotation-unchecked] | ||
batch_ndim = op.batch_ndim(node) | ||
|
||
shape_feature: ShapeFeature | None = getattr(fgraph, "shape_feature", None) # type: ignore[annotation-unchecked] | ||
if shape_feature: | ||
core_shapes = [ | ||
[shape_feature.get_shape(out, i) for i in range(batch_ndim, out.type.ndim)] | ||
for out in node.outputs | ||
] | ||
else: | ||
input_shapes = [tuple(inp.shape) for inp in node.inputs] | ||
core_shapes = [ | ||
out_shape[batch_ndim:] | ||
for out_shape in op.infer_shape(None, node, input_shapes) | ||
] | ||
|
||
core_shapes = [ | ||
as_tensor(core_shape) if len(core_shape) else constant([], dtype="int64") | ||
for core_shape in core_shapes | ||
] | ||
|
||
if any( | ||
isinstance(node.op, Blockwise) | ||
for node in applys_between(node.inputs, core_shapes) | ||
): | ||
# If Blockwise shows up in the shape graph we can't introduce the core shape | ||
return None | ||
|
||
return BlockwiseWithCoreShape( | ||
[*node.inputs, *core_shapes], | ||
node.outputs, | ||
destroy_map=op.destroy_map, | ||
)(*node.inputs, *core_shapes, return_list=True) | ||
|
||
|
||
optdb.register( | ||
introduce_explicit_core_shape_blockwise.__name__, | ||
out2in(introduce_explicit_core_shape_blockwise), | ||
"numba", | ||
position=100, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
from pytensor import function | ||
from pytensor.tensor import tensor | ||
from pytensor.tensor.basic import ARange | ||
from pytensor.tensor.blockwise import Blockwise | ||
from pytensor.tensor.nlinalg import SVD, Det | ||
from pytensor.tensor.slinalg import Cholesky, cholesky | ||
from tests.link.numba.test_basic import compare_numba_and_py, numba_mode | ||
|
||
|
||
# Fails if object mode warning is issued when not expected | ||
pytestmark = pytest.mark.filterwarnings("error") | ||
|
||
|
||
@pytest.mark.parametrize("shape_opt", [True, False], ids=str) | ||
@pytest.mark.parametrize("core_op", [Det(), Cholesky(), SVD(compute_uv=True)], ids=str) | ||
def test_blockwise(core_op, shape_opt): | ||
x = tensor(shape=(5, None, None)) | ||
outs = Blockwise(core_op=core_op)(x, return_list=True) | ||
|
||
mode = ( | ||
numba_mode.including("ShapeOpt") | ||
if shape_opt | ||
else numba_mode.excluding("ShapeOpt") | ||
) | ||
x_test = np.eye(3) * np.arange(1, 6)[:, None, None] | ||
compare_numba_and_py( | ||
([x], outs), | ||
[x_test], | ||
numba_mode=mode, | ||
eval_obj_mode=False, | ||
) | ||
|
||
|
||
def test_non_square_blockwise(): | ||
"""Test that Op that cannot always be blockwised at runtime fails gracefully.""" | ||
x = tensor(shape=(3,), dtype="int64") | ||
out = Blockwise(core_op=ARange(dtype="int64"), signature="(),(),()->(a)")(0, x, 1) | ||
|
||
with pytest.warns(UserWarning, match="Numba will use object mode"): | ||
fn = function([x], out, mode="NUMBA") | ||
|
||
np.testing.assert_allclose(fn([5, 5, 5]), np.broadcast_to(np.arange(5), (3, 5))) | ||
|
||
with pytest.raises(ValueError): | ||
fn([3, 4, 5]) | ||
|
||
|
||
def test_blockwise_benchmark(benchmark): | ||
x = tensor(shape=(5, 3, 3)) | ||
out = cholesky(x) | ||
assert isinstance(out.owner.op, Blockwise) | ||
|
||
fn = function([x], out, mode="NUMBA") | ||
x_test = np.eye(3) * np.arange(1, 6)[:, None, None] | ||
fn(x_test) # JIT compile | ||
benchmark(fn, x_test) |