Skip to content

Commit

Permalink
Fix doctring log-likelihood to distribution
Browse files Browse the repository at this point in the history
  • Loading branch information
aibit0111 committed Nov 17, 2024
1 parent 36cca5b commit e82fed4
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions pymc/distributions/multivariate.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ def quaddist_chol(value, mu, cov):

class MvNormal(Continuous):
r"""
Multivariate normal log-likelihood.
Multivariate normal distribution.
.. math::
Expand Down Expand Up @@ -394,7 +394,7 @@ def rng_fn(cls, rng, nu, mu, cov, size):

class MvStudentT(Continuous):
r"""
Multivariate Student-T log-likelihood.
Multivariate Student-T distribution.
.. math::
f(\mathbf{x}| \nu,\mu,\Sigma) =
Expand Down Expand Up @@ -491,7 +491,7 @@ def logp(value, nu, mu, scale):

class Dirichlet(SimplexContinuous):
r"""
Dirichlet log-likelihood.
Dirichlet distribution.
.. math::
Expand Down Expand Up @@ -563,7 +563,7 @@ def logp(value, a):

class Multinomial(Discrete):
r"""
Multinomial log-likelihood.
Multinomial distribution.
Generalizes binomial distribution, but instead of each trial resulting
in "success" or "failure", each one results in exactly one of some
Expand Down Expand Up @@ -691,7 +691,7 @@ def rv_op(cls, n, a, *, size=None, rng=None):


class DirichletMultinomial(Discrete):
r"""Dirichlet Multinomial log-likelihood.
r"""Dirichlet Multinomial distribution.
Dirichlet mixture of Multinomials distribution, with a marginalized PMF.
Expand Down Expand Up @@ -950,7 +950,7 @@ def rng_fn(cls, rng, nu, V, size):

class Wishart(Continuous):
r"""
Wishart log-likelihood.
Wishart distribution.
The Wishart distribution is the probability distribution of the
maximum-likelihood estimator (MLE) of the precision matrix of a
Expand Down Expand Up @@ -1648,7 +1648,7 @@ def lkjcorr_default_transform(op, rv):

class LKJCorr:
r"""
The LKJ (Lewandowski, Kurowicka and Joe) log-likelihood.
The LKJ (Lewandowski, Kurowicka and Joe) distribution.
The LKJ distribution is a prior distribution for correlation matrices.
If eta = 1 this corresponds to the uniform distribution over correlation
Expand Down Expand Up @@ -1753,7 +1753,7 @@ def rng_fn(cls, rng, mu, rowchol, colchol, size=None):

class MatrixNormal(Continuous):
r"""
Matrix-valued normal log-likelihood.
Matrix-valued normal distribution.
.. math::
f(x \mid \mu, U, V) =
Expand Down Expand Up @@ -1961,7 +1961,7 @@ def rv_op(cls, mu, sigma, *covs, size=None, rng=None):

class KroneckerNormal(Continuous):
r"""
Multivariate normal log-likelihood with Kronecker-structured covariance.
Multivariate normal distribution with Kronecker-structured covariance.
.. math::
Expand Down

0 comments on commit e82fed4

Please sign in to comment.