Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ensure consistent line endings in the repository #332

Merged
merged 1 commit into from
Jul 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitattributes
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
* text eol=lf
2 changes: 2 additions & 0 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@ repos:
hooks:
- id: end-of-file-fixer
- id: trailing-whitespace
- id: mixed-line-ending
args: [--fix, lf]
- id: check-yaml
exclude: |
(?x)^(
Expand Down
170 changes: 85 additions & 85 deletions test/ops/test_matmul.py
Original file line number Diff line number Diff line change
@@ -1,85 +1,85 @@
import os
import pytest
import torch
import pyg_lib
from pyg_lib.testing import withCUDA
os.environ['NVIDIA_TF32_OVERRIDE'] = '0'
torch.backends.cuda.matmul.allow_tf32 = False
torch.set_float32_matmul_precision('highest') # Enforce FP32
@withCUDA
@pytest.mark.parametrize('dtype', [torch.float, torch.bfloat16])
def test_segment_matmul_autograd(dtype, device):
if device.type == 'cuda' and dtype == torch.bfloat16:
pytest.skip('CUDA does not support bfloat16')
inputs = torch.randn((8, 16), requires_grad=True, device=device,
dtype=dtype)
ptr = torch.tensor([0, 5, 8]).to(torch.device(device))
other = torch.randn((2, 16, 32), requires_grad=True, device=device,
dtype=dtype)
bias = torch.randn((2, 32), requires_grad=True, device=device, dtype=dtype)
out = pyg_lib.ops.segment_matmul(inputs, ptr, other, bias)
assert out.size() == (8, 32)
out1 = inputs[ptr[0]:ptr[1]] @ other[0] + bias[0]
assert torch.allclose(out[ptr[0]:ptr[1]], out1, atol=1e-6)
out2 = inputs[ptr[1]:ptr[2]] @ other[1] + bias[1]
assert torch.allclose(out[ptr[1]:ptr[2]], out2, atol=1e-6)
out.mean().backward()
assert other.grad.size() == other.size()
assert inputs.grad.size() == inputs.size()
@withCUDA
@pytest.mark.parametrize('dtype', [torch.float, torch.bfloat16])
@pytest.mark.parametrize('transposed', [True, False])
def test_grouped_matmul_autograd(dtype, transposed, device):
if device.type == 'cuda' and dtype == torch.bfloat16:
pytest.skip('CUDA does not support bfloat16')
inputs = [
torch.randn(5, 16, device=device, requires_grad=True),
torch.randn(6, 9, device=device, requires_grad=True),
torch.randn(3, 32, device=device, requires_grad=True),
]
if transposed:
others_origin = [
torch.randn(48, 16, device=device, requires_grad=True),
torch.randn(42, 9, device=device, requires_grad=True),
torch.randn(64, 32, device=device, requires_grad=True),
]
others = [other.t() for other in others_origin]
else:
others = [
torch.randn(16, 48, device=device, requires_grad=True),
torch.randn(9, 42, device=device, requires_grad=True),
torch.randn(32, 64, device=device, requires_grad=True),
]
biases = [
torch.randn(48, device=device, requires_grad=True),
torch.randn(42, device=device, requires_grad=True),
torch.randn(64, device=device, requires_grad=True),
]
outs = pyg_lib.ops.grouped_matmul(inputs, others, biases)
assert len(outs) == len(inputs)
for i in range(len(outs)):
assert outs[i].size() == (inputs[i].size(0), others[i].size(-1))
expected = inputs[i] @ others[i] + biases[i]
assert torch.allclose(outs[i], expected, atol=1e-4)
sum([out.sum() for out in outs]).backward()
for i in range(len(outs)):
if transposed:
assert others_origin[i].grad.size() == others_origin[i].size()
else:
assert others[i].grad.size() == others[i].size()
import os

import pytest
import torch

import pyg_lib
from pyg_lib.testing import withCUDA

os.environ['NVIDIA_TF32_OVERRIDE'] = '0'
torch.backends.cuda.matmul.allow_tf32 = False
torch.set_float32_matmul_precision('highest') # Enforce FP32


@withCUDA
@pytest.mark.parametrize('dtype', [torch.float, torch.bfloat16])
def test_segment_matmul_autograd(dtype, device):
if device.type == 'cuda' and dtype == torch.bfloat16:
pytest.skip('CUDA does not support bfloat16')

inputs = torch.randn((8, 16), requires_grad=True, device=device,
dtype=dtype)
ptr = torch.tensor([0, 5, 8]).to(torch.device(device))
other = torch.randn((2, 16, 32), requires_grad=True, device=device,
dtype=dtype)
bias = torch.randn((2, 32), requires_grad=True, device=device, dtype=dtype)
out = pyg_lib.ops.segment_matmul(inputs, ptr, other, bias)
assert out.size() == (8, 32)

out1 = inputs[ptr[0]:ptr[1]] @ other[0] + bias[0]
assert torch.allclose(out[ptr[0]:ptr[1]], out1, atol=1e-6)

out2 = inputs[ptr[1]:ptr[2]] @ other[1] + bias[1]
assert torch.allclose(out[ptr[1]:ptr[2]], out2, atol=1e-6)

out.mean().backward()
assert other.grad.size() == other.size()
assert inputs.grad.size() == inputs.size()


@withCUDA
@pytest.mark.parametrize('dtype', [torch.float, torch.bfloat16])
@pytest.mark.parametrize('transposed', [True, False])
def test_grouped_matmul_autograd(dtype, transposed, device):
if device.type == 'cuda' and dtype == torch.bfloat16:
pytest.skip('CUDA does not support bfloat16')

inputs = [
torch.randn(5, 16, device=device, requires_grad=True),
torch.randn(6, 9, device=device, requires_grad=True),
torch.randn(3, 32, device=device, requires_grad=True),
]
if transposed:
others_origin = [
torch.randn(48, 16, device=device, requires_grad=True),
torch.randn(42, 9, device=device, requires_grad=True),
torch.randn(64, 32, device=device, requires_grad=True),
]
others = [other.t() for other in others_origin]
else:
others = [
torch.randn(16, 48, device=device, requires_grad=True),
torch.randn(9, 42, device=device, requires_grad=True),
torch.randn(32, 64, device=device, requires_grad=True),
]

biases = [
torch.randn(48, device=device, requires_grad=True),
torch.randn(42, device=device, requires_grad=True),
torch.randn(64, device=device, requires_grad=True),
]

outs = pyg_lib.ops.grouped_matmul(inputs, others, biases)
assert len(outs) == len(inputs)

for i in range(len(outs)):
assert outs[i].size() == (inputs[i].size(0), others[i].size(-1))
expected = inputs[i] @ others[i] + biases[i]
assert torch.allclose(outs[i], expected, atol=1e-4)

sum([out.sum() for out in outs]).backward()
for i in range(len(outs)):
if transposed:
assert others_origin[i].grad.size() == others_origin[i].size()
else:
assert others[i].grad.size() == others[i].size()
Loading