Skip to content

Commit

Permalink
Implement El Farol model
Browse files Browse the repository at this point in the history
Co-authored-by: Daniel Xu <[email protected]>
  • Loading branch information
rht and danielxu05 committed Nov 25, 2023
1 parent 59ab01f commit 3ec2be4
Show file tree
Hide file tree
Showing 7 changed files with 649 additions and 0 deletions.
28 changes: 28 additions & 0 deletions examples/el_farol/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# El Farol

This folder contains an implementation of El Farol restaurant model. Agents (restaurant customers) decide whether to go to the restaurant or not based on their memory and reward from previous trials. Implications from the model have been used to explain how individual decision-making affects overall performance and fluctuation.

This example has 2 versions of the model: the pure Mesa version without IBL (named as ElFarolBar), and the version with IBL that integrates with PyIBL (named as ElFarolBarIBLT). The latter version replicates the result of Kumar 2016. The base version without IBL is based on Fogel 1999 (in particular the calculation of the prediction), which is a refinement over Arthur 1994.

The IBL version of the model demonstrates how to deploy a cognitive model (Instance-Based Learning) under the Mesa environment. IBL model reflects the recency and frequency effect in decision-making with memory. Agent actively learns from the environment and updates their preference(blending value) for each decision. IBL model could be used as a substitute for an agent whose decision-making is more realistic and closer to human decision-making.
TODO: The first plot in el_farol_iblt.ipynb does not match figure 1 in Kumar 2016.


## How to Run

Launch the model: Please check el_farol.ipynb for more information.
Please see this [link](http://pyibl.ddmlab.com/) to install pyibl package.

## Files
* [el_farol.ipynb](el_farol.ipynb): Test the model and visualization in a Jupyter notebook
* [el_farol_iblt.ipynb](el_farol_iblt.ipynb): Test the IBLT model and visualization in a Jupyter notebook
* [el_farol/model.py](el_farol/model.py): Core model file.
* [el_farol/agents.py](el_farol/agents.py): The agent class and also contain a cognitive model for el_farol problem.

## Further Reading

=======
[1] W. Brian Arthur Inductive Reasoning and Bounded Rationality (1994) https://www.jstor.org/stable/2117868
[2] D.B. Fogel, K. Chellapilla, P.J. Angeline Inductive reasoning and bounded rationality reconsidered (1999)
[3] NetLogo implementation of the El Farol bar problem https://ccl.northwestern.edu/netlogo/models/ElFarol
[3] Kumar, Shikhar, and Cleotilde Gonzalez. "Heterogeneity of Memory Decay and Collective Learning in the El Farol Bar Problem." (2016).
157 changes: 157 additions & 0 deletions examples/el_farol/el_farol.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import seaborn as sns\n",
"\n",
"from el_farol.model import ElFarolBar"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"memory_sizes = [5, 10, 20]\n",
"crowd_threshold = 60\n",
"models = [\n",
" ElFarolBar(N=100, crowd_threshold=crowd_threshold, memory_size=m)\n",
" for m in memory_sizes\n",
"]\n",
"for model in models:\n",
" for i in range(100):\n",
" model.step()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You should observe that the attendance converges to 60.\n",
"_, axs = plt.subplots(1, 3, figsize=(10, 3))\n",
"for idx, model in enumerate(models):\n",
" ax = axs[idx]\n",
" plt.sca(ax)\n",
" df = model.datacollector.get_model_vars_dataframe()\n",
" sns.lineplot(data=df, x=df.index, y=\"Customers\", ax=ax)\n",
" ax.set(\n",
" xlabel=\"Step\",\n",
" ylabel=\"Attendance\",\n",
" title=f\"Memory size = {memory_sizes[idx]}\",\n",
" ylim=(20, 80),\n",
" )\n",
" plt.axhline(crowd_threshold, color=\"tab:red\")\n",
" plt.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for idx, memory_size in enumerate(memory_sizes):\n",
" model = models[idx]\n",
" df = model.datacollector.get_agent_vars_dataframe()\n",
" sns.lineplot(\n",
" x=df.index.levels[0],\n",
" y=df.Utility.groupby(\"Step\").mean(),\n",
" label=str(memory_size),\n",
" )\n",
"plt.legend(title=\"Memory size\");"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Decisions made on across trials\n",
"fix, axs = plt.subplots(1, 3, figsize=(12, 4))\n",
"for idx, memory_size in enumerate(memory_sizes):\n",
" plt.sca(axs[idx])\n",
" df = models[idx].datacollector.get_agent_vars_dataframe()\n",
" df.reset_index(inplace=True)\n",
" ax = sns.heatmap(df.pivot(index=\"AgentID\", columns=\"Step\", values=\"Attendance\"))\n",
" ax.set(title=f\"Memory size = {memory_size}\")\n",
" plt.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Next, we experiment with varying the number of strategies\n",
"num_strategies_list = [5, 10, 20]\n",
"crowd_threshold = 60\n",
"models = [\n",
" ElFarolBar(N=100, crowd_threshold=crowd_threshold, num_strategies=ns)\n",
" for ns in num_strategies_list\n",
"]\n",
"for model in models:\n",
" for i in range(100):\n",
" model.step()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Attendance of the bar based on the number of strategies\n",
"_, axs = plt.subplots(1, 3, figsize=(10, 3))\n",
"for idx, num_strategies in enumerate(num_strategies_list):\n",
" model = models[idx]\n",
" ax = axs[idx]\n",
" plt.sca(ax)\n",
" df = model.datacollector.get_model_vars_dataframe()\n",
" sns.lineplot(data=df, x=df.index, y=\"Customers\", ax=ax)\n",
" ax.set(\n",
" xlabel=\"Trial\",\n",
" ylabel=\"Attendance\",\n",
" title=f\"Number of Strategies = {num_strategies}\",\n",
" ylim=(20, 80),\n",
" )\n",
" plt.axhline(crowd_threshold, color=\"tab:red\")\n",
" plt.tight_layout()"
]
}
],
"metadata": {
"interpreter": {
"hash": "18b8a6ab22c23ac88fce14986952a46f0d293914064547c699eac09fb58cfe0f"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Empty file.
109 changes: 109 additions & 0 deletions examples/el_farol/el_farol/agents.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
import mesa
import numpy as np


class BarCustomer(mesa.Agent):
def __init__(self, unique_id, model, memory_size, crowd_threshold, num_strategies):
super().__init__(unique_id, model)
# Random values from -1.0 to 1.0
self.strategies = np.random.rand(num_strategies, memory_size + 1) * 2 - 1
self.best_strategy = self.strategies[0]
self.attend = False
self.memory_size = memory_size
self.crowd_threshold = crowd_threshold
self.utility = 0
self.update_strategies()

def step(self):
prediction = self.predict_attendance(
self.best_strategy, self.model.history[-self.memory_size :]
)
if prediction <= self.crowd_threshold:
self.attend = True
self.model.attendance += 1
else:
self.attend = False

def update_strategies(self):
# Pick the best strategy based on new history window
best_score = float("inf")
for strategy in self.strategies:
score = 0
for week in range(self.memory_size):
last = week + self.memory_size
prediction = self.predict_attendance(
strategy, self.model.history[week:last]
)
score += abs(self.model.history[last] - prediction)
if score <= best_score:
best_score = score
self.best_strategy = strategy
should_attend = self.model.history[-1] <= self.crowd_threshold
if should_attend != self.attend:
self.utility -= 1
else:
self.utility += 1

def predict_attendance(self, strategy, subhistory):
# This is extracted from the source code of the model in
# https://ccl.northwestern.edu/netlogo/models/ElFarol.
# This reports an agent's prediction of the current attendance
# using a particular strategy and portion of the attendance history.
# More specifically, the strategy is then described by the formula
# p(t) = x(t - 1) * a(t - 1) + x(t - 2) * a(t - 2) +..
# ... + x(t - memory_size) * a(t - memory_size) + c * 100,
# where p(t) is the prediction at time t, x(t) is the attendance of the
# bar at time t, a(t) is the weight for time t, c is a constant, and
# MEMORY-SIZE is an external parameter.

# The first element of the strategy is the constant, c, in the
# prediction formula. one can think of it as the the agent's prediction
# of the bar's attendance in the absence of any other data then we
# multiply each week in the history by its respective weight.
return strategy[0] * 100 + sum(strategy[1:] * subhistory)


class BarCustomerIBLT(mesa.Agent):
"""
This is BarCustomer but implemented using PyIBL
"""

def __init__(self, unique_id, model, decay, crowd_threshold):
super().__init__(unique_id, model)

import pyibl

self.agent = pyibl.Agent(
name="BarCustomer",
attributes=["Attendance"],
decay=decay,
noise=np.random.uniform(0.1, 1.5),
)
self.agent.default_utility = 10
self.utility = 0
self.decay = decay
self.crowd_threshold = crowd_threshold
# The step() at initialization is necessary because the agent respond
# needs the choose method to be executed beforehand.
self.step()
self.update_strategies()

def step(self):
choice = self.agent.choose(["Attend", "Not Attend"])
if choice == "Attend":
self.attend = True
self.model.attendance += 1
else:
self.attend = False

def update_strategies(self):
"""
Update blending value for IBL agent. the if statement is the same as the if statement in BarCustomer agent
"""
should_attend = self.model.history[-1] <= self.crowd_threshold
if should_attend != self.attend:
self.agent.respond(-1)
self.utility -= 1
else:
self.agent.respond(1)
self.utility += 1
76 changes: 76 additions & 0 deletions examples/el_farol/el_farol/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
import mesa
import numpy as np

from .agents import BarCustomer, BarCustomerIBLT


class ElFarolBar(mesa.Model):
def __init__(
self,
crowd_threshold=60,
num_strategies=10,
memory_size=10,
width=100,
height=100,
N=100,
):
self.running = True
self.num_agents = N
self.schedule = mesa.time.RandomActivation(self)

# Initialize the previous attendance randomly so the agents have a history
# to work with from the start.
# The history is twice the memory, because we need at least a memory
# worth of history for each point in memory to test how well the
# strategies would have worked.
self.history = np.random.randint(0, 100, size=memory_size * 2).tolist()
self.attendance = self.history[-1]
for i in range(self.num_agents):
a = BarCustomer(i, self, memory_size, crowd_threshold, num_strategies)
self.schedule.add(a)
self.datacollector = mesa.DataCollector(
model_reporters={"Customers": "attendance"},
agent_reporters={"Utility": "utility", "Attendance": "attend"},
)

def step(self):
self.datacollector.collect(self)
self.attendance = 0
self.schedule.step()
self.history.pop(0)
self.history.append(self.attendance)
for agent in self.schedule.agents:
agent.update_strategies()


class ElFarolBarIBLT(ElFarolBar):
def __init__(
self,
crowd_threshold=60,
decay=None,
memory_size=10,
width=100,
height=100,
N=100,
):
self.running = True
self.num_agents = N
self.schedule = mesa.time.RandomActivation(self)
self.history = np.random.randint(0, 100, size=memory_size * 2).tolist()
self.attendance = self.history[0]
if decay is None:
decay = {1: 1}
i = 0
for d, portion in decay.items():
for _ in range(int(self.num_agents * portion)):
a = BarCustomerIBLT(i, self, d, crowd_threshold)
self.schedule.add(a)
i += 1
self.datacollector = mesa.DataCollector(
model_reporters={"Customers": "attendance"},
agent_reporters={
"Utility": "utility",
"Decay": "decay",
"Attendance": "attend",
},
)
Loading

0 comments on commit 3ec2be4

Please sign in to comment.