Skip to content

Commit

Permalink
Improve part on P/Q units' domain correction.
Browse files Browse the repository at this point in the history
Signed-off-by: parvy <[email protected]>
  • Loading branch information
p-arvy committed Feb 16, 2024
1 parent 8382b27 commit 44ae055
Showing 1 changed file with 17 additions and 10 deletions.
27 changes: 17 additions & 10 deletions open-reac/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -177,35 +177,42 @@ phase shift transformer on the same branch.
#### 4.4 P/Q units' domain

The following corrections apply successively to determine consistent domains for the active
power and reactive power produced by generators. Please note that in the end, the corrected bounds are rectangular
(not trapezoidal), and they are used only in the reactive OPF (see [7](#7-alternative-current-optimal-power-flow)).
power and reactive power produced by generators.

To determine the consistent domain of produced active power, the bounds of the domains
$P_g^{min}$ and $P_g^{max}$, as well as the target $P_g^{t}$ of generator $g$ (all specified in `ampl_network_generators.txt`) are used.
Let $P_{g}^{min,c}$ and $P_{g}^{max,c}$ be the corrected active bounds :
Let $P_{g}^{min,c}$ and $P_{g}^{max,c}$ be the corrected active bounds:

- By default, $P_{g}^{min,c} = \text{defaultPmin}$ and $P_{g}^{max,c} = \text{defaultPmax}$ (see [3.2](#32-configuration-of-the-run))
- If $|P_g^{max}| \geq \text{PQmax}$, then $P_{g}^{max,c} = \max(\text{defaultPmax}, P_g^t)$
- If $|P_g^{min}| \geq \text{PQmax}$, then $P_{g}^{min,c} = \min(\text{defaultPmin}, P_g^t)$
- If $|P_{g}^{max,c} - P_{g}^{min,c}| \leq \text{minimalQPrange}$, then $P_{g}^{max,c} = P_{g}^{min,c} = P_{g}^t$ (active power is fixed).

To determine the consistent domain of produced reactive power, the reactive power diagram
(`specified in ampl_network_generators.txt`) of generator
$g$ est utilisé : $qp_g$ (resp. $qP_g$) and $Qp_g$ ($QP_g$) when $P_{g}^{min,c}$ (resp. P_{g}^{max,c}) is reached.
(specified in `ampl_network_generators.txt`) of generator
$g$ is used : $qp_g$ (resp. $qP_g$) and $Qp_g$ ($QP_g$) when $P_{g}^{min,c}$ (resp. $P_{g}^{max,c}$) is reached.
Let $qp_g^c$ (resp. $qP_g^c$) and $Qp_g^c$ (resp. $QP_g^c$) be the bounds of the corrected reactive diagram,
and $Q_{g}^{min,c}$ and $Q_{g}^{max,c}$ be the corrected reactive bounds :
and $Q_{g}^{min,c}$ and $Q_{g}^{max,c}$ be the corrected reactive bounds:

- By default, $qp_g^{c} = qP_{g}^{c} = - \text{defaultPmin} \times \text{defaultQmaxPmaxRatio}$
and $Qp_{g}^{c} = QP_{g}^{c} = \text{defaultPmax} \times \text{defaultQmaxPmaxRatio}$ (see [3.2](#32-configuration-of-the-run))
- If $|qp_{g}| \geq \text{PQmax}$, then $qp_{g}^{c} = -\text{defaultQmaxPmaxRatio} \times P_{max}^{g,c}$.
Same with $qP_{g}^{c}$
Same with $qP_{g}^{c}$.
- If $|Qp_{g}| \geq \text{PQmax}$, then $Qp_{g}^{c} = \text{defaultQmaxPmaxRatio} \times P_{max}^{g,c}$.
Same with $QP_{g}^{c}$
- If $qp_{g}^{c} > Qp_{g}^{c}$, the values are swapped. Same with $qP_{g}^{c}$ and $QP_{g}^{c}$
- If the corrected reactive diagram is too small (distance between extremal values lower than $\text{minimalQPrange}$),
Same with $QP_{g}^{c}$.
- If $qp_{g}^{c} > Qp_{g}^{c}$, the values are swapped. Same with $qP_{g}^{c}$ and $QP_{g}^{c}$.
- If the corrected reactive diagram is too small (the distances between the vertices of the reactive diagram are lower than $\text{minimalQPrange}$),
then $qp_{g}^{c} = Qp_{g}^{c} = qP_{g}^{c} = QP_{g}^{c} = \frac{qp_{g}^{c} + Qp_{g}^{c} + qP_{g}^{c} + QP_{g}^{c}}{4}$ (reactive power is fixed).
- $Q_{g}^{min,c} = \min(qp_{g}^{c}, qP_{g}^{c})$ and $Q_{g}^{max,c} = \min(Qp_{g}^{c}, QP_{g}^{c})$

Please note that in the end, the corrected bounds are rectangular
(not trapezoidal), and they are used only in the reactive OPF
(see [7](#7-alternative-current-optimal-power-flow)).
The general correction of the generator's reactive power diagram $g$
is illustrated in the following figure:

TODO : add figure.

### 5 Slack bus & main connex component

The slack bus $s$ is determined by identifying the bus with the highest number of AC branches connected,
Expand Down

0 comments on commit 44ae055

Please sign in to comment.