-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3 from pomonam/documentation
Code refactor + complete tests
- Loading branch information
Showing
65 changed files
with
5,292 additions
and
2,627 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
scikit-learn | ||
jupyter | ||
jupyter | ||
evaluate |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
import argparse | ||
import logging | ||
import os | ||
from typing import Tuple | ||
|
||
import numpy as np | ||
import torch | ||
import torch.nn.functional as F | ||
from accelerate.utils import set_seed | ||
from torch import nn | ||
from torch.optim import lr_scheduler | ||
from torch.utils import data | ||
from tqdm import tqdm | ||
|
||
from examples.cifar.pipeline import construct_resnet9, get_cifar10_dataset | ||
|
||
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description="Train ResNet-9 model on CIFAR-10 dataset.") | ||
|
||
parser.add_argument( | ||
"--corrupt_percentage", | ||
type=float, | ||
default=None, | ||
help="Percentage of the training dataset to corrupt.", | ||
) | ||
parser.add_argument( | ||
"--dataset_dir", | ||
type=str, | ||
default="./data", | ||
help="A folder to download or load CIFAR-10 dataset.", | ||
) | ||
|
||
parser.add_argument( | ||
"--train_batch_size", | ||
type=int, | ||
default=512, | ||
help="Batch size for the training dataloader.", | ||
) | ||
parser.add_argument( | ||
"--eval_batch_size", | ||
type=int, | ||
default=1024, | ||
help="Batch size for the evaluation dataloader.", | ||
) | ||
|
||
parser.add_argument( | ||
"--learning_rate", | ||
type=float, | ||
default=0.4, | ||
help="Initial learning rate to train the model.", | ||
) | ||
parser.add_argument( | ||
"--weight_decay", | ||
type=float, | ||
default=0.001, | ||
help="Weight decay to train the model.", | ||
) | ||
parser.add_argument( | ||
"--num_train_epochs", | ||
type=int, | ||
default=25, | ||
help="Total number of epochs to train the model.", | ||
) | ||
|
||
parser.add_argument( | ||
"--seed", | ||
type=int, | ||
default=1004, | ||
help="A seed for reproducible training pipeline.", | ||
) | ||
parser.add_argument( | ||
"--checkpoint_dir", | ||
type=str, | ||
default="./checkpoints", | ||
help="A path to store the final checkpoint.", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
if args.checkpoint_dir is not None: | ||
os.makedirs(args.checkpoint_dir, exist_ok=True) | ||
|
||
return args | ||
|
||
|
||
def train( | ||
dataset: data.Dataset, | ||
batch_size: int, | ||
num_train_epochs: int, | ||
learning_rate: float, | ||
weight_decay: float, | ||
disable_tqdm: bool = False, | ||
) -> nn.Module: | ||
train_dataloader = data.DataLoader( | ||
dataset=dataset, | ||
batch_size=batch_size, | ||
shuffle=True, | ||
drop_last=True, | ||
) | ||
|
||
model = construct_resnet9().to(DEVICE) | ||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay) | ||
|
||
iters_per_epoch = len(train_dataloader) | ||
lr_peak_epoch = num_train_epochs // 4 | ||
lr_schedule = np.interp( | ||
np.arange((num_train_epochs + 1) * iters_per_epoch), | ||
[0, lr_peak_epoch * iters_per_epoch, num_train_epochs * iters_per_epoch], | ||
[0, 1, 0], | ||
) | ||
scheduler = lr_scheduler.LambdaLR(optimizer, lr_schedule.__getitem__) | ||
|
||
model.train() | ||
for epoch in range(num_train_epochs): | ||
total_loss = 0.0 | ||
with tqdm(train_dataloader, unit="batch", disable=disable_tqdm) as tepoch: | ||
for batch in tepoch: | ||
tepoch.set_description(f"Epoch {epoch}") | ||
model.zero_grad() | ||
inputs, labels = batch | ||
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) | ||
outputs = model(inputs) | ||
loss = F.cross_entropy(outputs, labels) | ||
loss.backward() | ||
optimizer.step() | ||
scheduler.step() | ||
total_loss += loss.detach().float() | ||
tepoch.set_postfix(loss=total_loss.item() / len(train_dataloader)) | ||
return model | ||
|
||
|
||
def evaluate(model: nn.Module, dataset: data.Dataset, batch_size: int) -> Tuple[float, float]: | ||
dataloader = data.DataLoader( | ||
dataset=dataset, | ||
batch_size=batch_size, | ||
shuffle=False, | ||
drop_last=False, | ||
) | ||
|
||
model.eval() | ||
total_loss, total_correct = 0.0, 0 | ||
for batch in dataloader: | ||
with torch.no_grad(): | ||
inputs, labels = batch | ||
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) | ||
outputs = model(inputs) | ||
loss = F.cross_entropy(outputs, labels, reduction="sum") | ||
total_loss += loss.detach().float() | ||
total_correct += outputs.detach().argmax(1).eq(labels).sum() | ||
|
||
return total_loss.item() / len(dataloader.dataset), total_correct.item() / len(dataloader.dataset) | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
logging.basicConfig(level=logging.INFO) | ||
logger = logging.getLogger() | ||
|
||
if args.seed is not None: | ||
set_seed(args.seed) | ||
|
||
train_dataset = get_cifar10_dataset( | ||
split="train", corrupt_percentage=args.corrupt_percentage, dataset_dir=args.dataset_dir | ||
) | ||
model = train( | ||
dataset=train_dataset, | ||
batch_size=args.train_batch_size, | ||
num_train_epochs=args.num_train_epochs, | ||
learning_rate=args.learning_rate, | ||
weight_decay=args.weight_decay, | ||
) | ||
|
||
eval_train_dataset = get_cifar10_dataset(split="eval_train", dataset_dir=args.dataset_dir) | ||
train_loss, train_acc = evaluate(model=model, dataset=eval_train_dataset, batch_size=args.eval_batch_size) | ||
logger.info(f"Train loss: {train_loss}, Train Accuracy: {train_acc}") | ||
|
||
eval_dataset = get_cifar10_dataset(split="valid", dataset_dir=args.dataset_dir) | ||
eval_loss, eval_acc = evaluate(model=model, dataset=eval_dataset, batch_size=args.eval_batch_size) | ||
logger.info(f"Evaluation loss: {eval_loss}, Evaluation Accuracy: {eval_acc}") | ||
|
||
if args.checkpoint_dir is not None: | ||
model_name = "model" | ||
if args.corrupt_percentage is not None: | ||
model_name += "_corrupt_" + str(args.corrupt_percentage) | ||
torch.save(model.state_dict(), os.path.join(args.checkpoint_dir, f"{model_name}.pth")) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.