options(warn=-1)
suppressMessages(library(volesti))
suppressMessages(library(ggplot2))
suppressMessages(library(gridExtra))
suppressMessages(library(plotly))
#sample 500 points of a 2D-ball polytope
points = direct_sampling(n = 500, body = list("type" = "ball", "dimension" = 2))
sampled_data = as.data.frame(t(points))
sampled_data$color = 'Sampled Data'
#Function that returns the Circumference of 2D-Ball
make_2d_ball_circ <- function(center = c(0,0),diameter = 2){
radius = diameter/2
circle_points <- seq(0,2*pi,length.out = 500)
x <- center[1] + radius*cos(circle_points)
y <- center[2] + radius*sin(circle_points)
return(data.frame(axis_x = x, axis_y = y))
}
circle = make_2d_ball_circ()
circle$color = 'Ball\'s\nCircumference'
#plot
options(repr.plot.width = 7, repr.plot.height = 5)
p <- (ggplot() + geom_point(data=sampled_data, aes(x = V1, y = V2,colour=color))+
geom_point(data=circle, aes(x = axis_x, y = axis_y,colour=color)))
(p+ggtitle("Direct sampling of 2D Ball") +xlab("X-axis") + ylab("Y-axis"))
#sample 500 points of a 3D hypersphere polytope
points_3D = direct_sampling(n = 500, body = list("type" = "hypersphere", "dimension" = 3))
sampled_data_3D = as.data.frame(t(points_3D))
sampled_data_3D$color = 'Sampled Data'
#Function that returns the Circumference of 3D-sphere
make_3d_circ <- function(center = c(0,0),diameter = 2,non_dim='z'){
radius = diameter/2
circle_points <- seq(0,2*pi,length.out = 500)
d1 <- center[1] + radius*cos(circle_points)
d2 <- center[2] + radius*sin(circle_points)
if(non_dim=='z'){
return(data.frame(V1 = d1, V2 = d2, V3=0))
}
else if(non_dim=='y'){
return(data.frame(V1 = d1, V2 = 0, V3=d2))
}
else{
return(data.frame(V1 = 0, V2 = d1, V3=d2))
}
}
#Circumferences of all 3 dimensions of the 3D-sphere
cycle_3D = data.frame(matrix(ncol = 3, nrow = 0))
colnames(cycle_3D) <- c("V1", "V2", "V3")
for(d in list('x','y','z')){
cycle_3D = rbind(cycle_3D,make_3d_circ(non_dim=d))
}
cycle_3D$color = 'Sphere\'s\n Circumference'
#concat data
all_data = rbind(sampled_data_3D,cycle_3D)
#plot
layout(
plot_ly(x=all_data$V1, y=all_data$V2, z=all_data$V3, type="scatter3d", mode="markers", color = all_data$color),
title = "\n\nDirect sampling of 3D Ball"
)
suppressMessages(library(sybil))
options(warn=-1)
mp <- system.file(package = "sybil", "extdata")
mod <- readTSVmod(prefix = "Ec_core", fpath = mp, quoteChar = "\"")
modelorg2tsv(mod, prefix = "Ec_core")
data(Ec_core)
ex <- findExchReact(Ec_core)
optL <- optimizeProb(Ec_core, algorithm = "fba", retOptSol = FALSE)
fba <- optimizeProb(Ec_core, algorithm = "fba")
reading model description, ... OK
reading metabolite list ... OK
parsing reaction list ... OK
GPR mapping ... OK
sub systems ... OK
prepare modelorg object ... OK
validating object ... OK
TRUE
Loading required package: glpkAPI
using GLPK version 4.47
-
S : stoichiometric matrix
-
low_bound : capacity's lower bound
-
up_bound : capacity's upper bound
S<- (as.matrix(S(mod)))
low_bound<-mod@lowbnd
up_bound<-mod@uppbnd
- Sv=0, where S is the stoichiometric matrix and v a unknown vector we are looking for.
- ai<=vi<=bi, where ai defined by low_bound and bi by up_bound
In oder to represent these constraints we consider the linear inequality Ax<=b. So we construct A matrix and b vector.
m = dim(S)[1]
n = dim(S)[2]
up_matrix = diag(n)
low_matrix2 = -1*diag(n)
S2 = -1*S
zero_con = numeric(m)+10 #NOTE: ***Future Changes**
#Inequality contraints we contruct have only one fisible solution equal to zero vector.
# In order to show the whole sampling proccess we change constraint (1)
A<-rbind(up_matrix,low_matrix2,S,S2)
b<-rbind(t(matrix(up_bound,nrow = 1,ncol = n)),
t(matrix(-1*low_bound,nrow = 1,ncol = n)),
t(matrix(zero_con,nrow = 1,ncol = m)),
t(matrix(zero_con,nrow = 1,ncol = m)))
suppressMessages(library(volesti))
P = Hpolytope(A = A, b = c(b))
sampled_data<-sample_points(P, 10000)
suppressMessages(library(MASS))
current_path = 'C:/Users/petsi/Documents/UOA/Google'
name = '/sampled_data.csv'
full_path=paste(current_path,name,sep='')
write.matrix(sampled_data, file = full_path, sep = ",")
Plot the distributions of two co-ordinates of sampled points. These points sampled from Flux space of the metabolic network of e_coli
#make the necessary imports
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
#full path name of csv file
file_name = 'C:/Users/petsi/Documents/UOA/Google/sampled_data.csv'
df = pd.read_csv(file_name,sep=',',header=None)
#keep only 2 out of 95 dimensions of e-coli reactions
df = df[0:2]
data = df.values
#plot 3D distribution-histogramm of data
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111,projection='3d')
ax.title.set_text('Distribution of Sampled Points')
ax.set_xlabel('x')
ax.set_ylabel('y')
x, y = data[0], data[1]
nymber_of_bins = 100
minx = np.min(x)
miny = np.min(y)
maxx = np.max(x)
maxy = np.max(y)
hist, xedges, yedges = np.histogram2d(x, y, bins=nymber_of_bins,
range=[[minx, maxx], [miny, maxy]])
xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25, indexing="ij")
xpos = xpos.ravel()
ypos = ypos.ravel()
zpos = 0
dx = dy = 0.5 * np.ones_like(zpos)
dz = hist.ravel()
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, zsort='average')
plt.show()