Skip to content

pavel-perina/solvers-cpp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

author date
Pavel Perina
2024-06-06

Motivation

Experiments with Ceres Solver and Downhill simplex and basic evaluation.

Compilation

Compilation of this project was done in Microsoft Visual Studio 2022 Community

CMakeLists.txt should download all dependencies from git repositories and compile them. Good luck downloading them manually and specifying paths. Hopefully, I found half all of dependencies could be removed. All repos are relatively small, so it takes few seconds.

On my PC requires to copy c:\Program Files (x86)\Intel\oneAPI\mkl\2023.0.0\redist\intel64\mkl_intel_thread.2.dll into c:\dev-c\optim\out\build\x64-Clang-Debug\mkl_intel_thread.2.dll or similar directory, unless binary is run from MSVC.

Compilation works with both Microsoft C++ Compliler (x64-Debug) and Clang (x64-Clang-Debug) giving different warning messages when something in templated code is wrong and it's higher chance that one of output can be parsed by us, humans.

TODO: Fix Eigen, sometimes found, sometimes not, Eigen3_DIR ? TODO: Should be added to CMakeLists.txt and fetched

VS Code

This needs MSVC2022 installed. On top of that CMake Extension (twxs.cmake) and C/C++ extension (ms-vscode.cpptools) must be installed. Then press Ctrl+Shift+P for command menu and search: CMake: Select a Kit and select Visual Studio Community 2022 Release - amd64.

TODO: CMake Tools ext?

Example 1

It tries to find function in form y=A1*exp(-lambda1*x) + A2*exp(-lambda2*x) that approximates predefined data (generated in Python).

Output

c:\dev-c\optim\out\build\x64-Clang-Release>ceres_example_1.exe
iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  1.723603e+01    0.00e+00    2.88e+01   0.00e+00   0.00e+00  1.00e+04        0    5.49e-05    2.00e-04
   1  9.108901e+00    8.13e+00    1.90e+01   0.00e+00   1.00e+00  3.00e+04        1    1.15e-04    6.94e-04
   2  3.094324e+00    6.01e+00    4.22e+00   6.56e-01   1.18e+00  9.00e+04        1    3.11e-05    8.06e-04
   3  1.320764e+00    1.77e+00    7.95e-01   5.97e-01   1.16e+00  2.70e+05        1    2.61e-05    8.82e-04
   4  1.168544e+00    1.52e-01    4.56e-01   2.04e-01   1.26e+00  8.10e+05        1    3.09e-05    9.98e-04
   5  1.064969e+00    1.04e-01    3.59e+00   3.12e-01   1.07e-01  5.45e+05        1    2.22e-04    1.28e-03
   6  1.026700e+00    3.83e-02    3.98e+00   1.70e-01   3.94e-02  3.06e+05        1    3.81e-05    1.37e-03
   7  9.550805e-01    7.16e-02    4.95e+00   3.22e-01   7.55e-02  1.90e+05        1    3.63e-05    1.47e-03
   8  8.337797e-01    1.21e-01    1.17e+01   2.17e+00   1.35e-01  1.37e+05        1    2.56e-05    1.54e-03
   9  5.450557e-01    2.89e-01    5.07e+00   1.80e+00   3.70e-01  1.34e+05        1    3.58e-05    1.62e-03
  10  5.388057e-02    4.91e-01    2.08e-01   7.08e-01   9.93e-01  4.03e+05        1    2.56e-05    1.69e-03
  11  5.213641e-02    1.74e-03    4.81e-03   1.20e-01   9.44e-01  1.21e+06        1    2.56e-05    1.76e-03
  12  5.211361e-02    2.28e-05    2.12e-04   1.49e-02   9.25e-01  3.12e+06        1    2.51e-05    1.83e-03
  13  5.211347e-02    1.38e-07    2.58e-05   1.28e-03   9.14e-01  7.20e+06        1    2.51e-05    1.90e-03
C:\dev-c\optim\out\build\x64-Clang-Release\_deps\ceres-src\internal\ceres\trust_region_minimizer.cc:758 Terminating: Function tolerance reached. |cost_change|/cost: 2.017492e-08 <= 1.000000e-06
Ceres Solver Report: Iterations: 14, Initial cost: 1.723603e+01, Final cost: 5.211347e-02, Termination: CONVERGENCE
Final solution:
    y = 0.959354*exp(-0.195071*x) + 2.23905*exp(-1.89224*x)

Note: starting condition was changed later to match example 3.

Example 2

It tries to find minimum of a function that is (squared,) positive distance from a point, starting at zero.

Problems:

  • Without limiting A>0, lambda<0 there are more steps, some of them return infinity
  • Function was intentionally done with double arguments and result. Automatic differentiation does not work, numeric one used. This is the case with all black-box functions embedded in some library.

Output

c:\dev-c\optim\out\build\x64-Release>ceres_example_2.exe
   0: f: 1.580642e+06 d: 0.00e+00 g: 1.49e+05 h: 0.00e+00 s: 0.00e+00 e:  0 it: 3.49e-05 tt: 1.35e-04
   1: f: 5.330761e+05 d: 1.05e+06 g: 6.61e+04 h: 1.00e+01 s: 6.70e-05 e:  2 it: 6.51e-05 tt: 5.38e-04
   2: f: 1.707265e+05 d: 3.62e+05 g: 2.81e+04 h: 7.97e+00 s: 1.00e+00 e:  1 it: 1.48e-05 tt: 6.22e-04
   3: f: 5.583508e+04 d: 1.15e+05 g: 1.22e+04 h: 5.91e+00 s: 1.00e+00 e:  1 it: 5.30e-06 tt: 6.86e-04
...
  22: f: 5.000174e-01 d: 9.92e-06 g: 7.81e-03 h: 1.26e-03 s: 1.00e+00 e:  1 it: 4.60e-06 tt: 1.78e-03
  23: f: 5.000034e-01 d: 1.40e-05 g: 3.18e-03 h: 2.41e-03 s: 6.39e-01 e:  1 it: 5.00e-06 tt: 1.84e-03
  24: f: 5.000000e-01 d: 3.37e-06 g: 2.83e-04 h: 1.79e-03 s: 1.00e+00 e:  1 it: 4.40e-06 tt: 1.89e-03
C:\dev-c\optim\out\build\x64-Release\_deps\ceres-src\internal\ceres\line_search_minimizer.cc:468 Terminating: Function tolerance reached. |cost_change|/cost: 4.559134e-08 <= 1.000000e-06
Ceres Solver Report: Iterations: 25, Initial cost: 1.580642e+06, Final cost: 5.000000e-01, Termination: CONVERGENCE
Final solution:
    -1.99996
  2.9999
      42

Example 3

The same task as example 1, but with numeric differentiation. Problems:

  • Limits did not work
  • Unclear why trust region does not work
  • ceres::LineSearchDirectionType::NONLINEAR_CONJUGATE_GRADIENT; is actually only method that seem to work

Output

   0: f: 6.831329e+04 d: 0.00e+00 g: 1.74e+06 h: 0.00e+00 s: 0.00e+00 e:  0 it: 4.69e-05 tt: 1.43e-04
   1: f: 1.353429e+01 d: 6.83e+04 g: 1.50e+02 h: 1.00e+00 s: 5.76e-07 e:  1 it: 2.29e-05 tt: 5.10e-04
   2: f: 5.827367e+00 d: 7.71e+00 g: 2.70e+01 h: 7.57e-01 s: 4.91e-03 e:  5 it: 8.17e-05 tt: 6.47e-04
   3: f: 1.639450e+00 d: 4.19e+00 g: 2.13e+01 h: 6.06e-01 s: 4.08e-02 e:  2 it: 1.77e-05 tt: 7.12e-04
...
  39: f: 5.431639e-03 d: 6.10e-08 g: 1.27e-04 h: 9.25e-04 s: 1.00e+00 e:  1 it: 9.70e-06 tt: 5.36e-03
  40: f: 5.431628e-03 d: 1.14e-08 g: 2.51e-05 h: 2.70e-04 s: 1.00e+00 e:  1 it: 8.90e-06 tt: 5.68e-03
C:\dev-c\optim\out\build\x64-Release\_deps\ceres-src\internal\ceres\line_search_minimizer.cc:468 Terminating: Function tolerance reached. |cost_change|/cost: 1.255704e-07 <= 1.000000e-06
Ceres Solver Report: Iterations: 41, Initial cost: 6.831329e+04, Final cost: 5.431627e-03, Termination: CONVERGENCE
Final solution:
    y = 2.23903*exp(-1.89234*x) + 0.959393*exp(-0.195078*x)
Number of calls: 468

Example 4

Using good, old simplex method which has roughly 150 lines of code. This took 377 iterations (with really tight tolerance), but it took 9.4e-04s. For some reason, cost reported by ceres solver is this cost squared and divided by two. 0.104227^2/2=0.00543163

Initial cost = 369.63
Duration = 0.0009437s
Final cost = 0.104227
Final solution:
    y = 2.23902*exp(-1.89233*x) + 0.959393*exp(-0.195078*x)
Number of calls: 2517

Example 5

Eigen. TBD

Summary

Pros:

  • It should be fast, state-of-the-art library
  • Reference guide with few examples
  • Dependencies on gtest, google-benchmark and glog are optional

Cons:

  • Not many examples
  • Heavily templated code -> in short, blackbox
  • Takes about minute to compile (and Ryzen 5900X is not slow)
  • Hopefully optional dependencies on google tests, google benchmark, glog (google logging)
  • For unknown reason, loads mkl_intel_thread.2.dll from Intel oneAPI toolkit (math kernel library which is installed on my PC(s)

Compared to simplex:

In this case, simplex method is faster, but it calls evaluation function more often. If evaluation is more expensive, using ceres solver could be much faster.

About

Experiments with Ceres Solver and simplex method

Topics

Resources

Stars

Watchers

Forks