Skip to content

A titable package gives some utilities to build final results tables for logistic regression analysis : distribution within class, OR in uni and multivariable studies

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

paul-bssr/titable

Repository files navigation

titable

The titable package provides function to efficiently conduct logistic regression analyses, and summarize them into compact tables. These tables can be saved in an excel sheet with a nice formatting.

The raw results of logistic regression are also directly accessible in the form of a data.frame. Thus, enabling, to achieve some usal plots as, for instance, forest plots.

Installation

You can install the development version of titable from GitHub with:

# install.packages("devtools")
devtools::install_github("paul-bssr/titable", INSTALL_opts=c("--no-multiarch"))

Sometimes JAVA version can cause an issue, generating th efollowing error message :

Error : .onLoad failed in loadNamespace() for 'rJava', details:
   call: fun(libname, pkgname)
   error: JAVA_HOME cannot be determined from the Registry
 Error: package or namespace load failed for ‘rJava’

In that case, installing 64 bit Java (here) should solve the issue.

Example

This is a typical use case for the library:

library(titable)
## Generating a summary table
table <- summary_table(data = wdbc.data,
                       studied_vars = c("radius", "texture", "compactness_quartile"),
                       dependent = "diagnosis",
                       multivariate = list(c("smoothness", "texture"),
                                           c("concavity", "symmetry")),
                       digits = 2,
                       digits_p = 2,
                       p_limit=0.001,
                       verbose=FALSE
                       )
table
#>                 label    levels          B          M
#>                radius Mean (SD) 12.1 (1.8) 17.5 (3.2)
#>               texture Mean (SD) 17.9 (4.0) 21.6 (3.8)
#>  compactness_quartile   1, N(%) 133 (37.4)    9 (4.2)
#>                         2, N(%) 120 (33.7)  22 (10.4)
#>                         3, N(%)  77 (21.6)  65 (30.7)
#>                         4, N(%)   26 (7.3) 116 (54.7)
#>                OR (univariate)                  OR (model 1)
#>      2.81 (2.37-3.42, p<0.001)     4.04 (3.07-5.64, p<0.001)
#>       1.26 (1.2-1.33, p<0.001)     1.33 (1.26-1.41, p<0.001)
#>                              -                             -
#>      2.71 (1.24-6.42, p=0.016)      3.4 (1.4-8.97, p=0.0093)
#>    12.47 (6.16-28.14, p<0.001)   12.69 (5.42-32.87, p<0.001)
#>  65.93 (31.13-155.48, p<0.001) 54.21 (20.66-157.56, p<0.001)
#>               OR (model 2)
#>   2.72 (2.2-3.46, p<0.001)
#>  1.25 (1.16-1.34, p<0.001)
#>                          -
#>   0.77 (0.31-1.96, p=0.57)
#>   0.52 (0.18-1.52, p=0.23)
#>  0.22 (0.05-0.91, p=0.038)

## Saving the result in an excel file
# # Creating an excel file
# save_summary_table(table, filepath="inst/extdata/", filename="test",
#                    sheetname = "test_sheet_1",
#                    title = "Regression logistic study",
#                    subtitle = "This is an interesting study.",
#                    list_variables_renaming = list("compactness_quartile"="Compactness quartile")
#                    )

About

A titable package gives some utilities to build final results tables for logistic regression analysis : distribution within class, OR in uni and multivariable studies

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages