A Python package for faster, safer, and simpler ML processes.
pip install benderml
Usage:
from bender.importers import DataImporters
pre_processed_data = await DataImporters.csv("file/to/data.csv").process([...]).run()
Bender will make your machine learning processes, faster, safer, simpler while at the same time making it easy and flexible. This is done by providing a set base component, around the core processes that will take place in a ML pipeline process. While also helping you with type hints about what your next move could be.
The whole pipeline is build using generics from Python's typing system. Resulting in an improved developer experience, as the compiler can know if your pipeline's logic makes sense before it has started.
Bender makes most of the sklearn
datasets available through the DataImporters.data_set(...)
importer. Here will you need to pass an enum to define which dataset you want. It is also possible to load the data from sql, append different data sources and cache, and it is as simple as:
from bender.importers import DataImporters
# Predifined data set
DataImporters.data_set(DataSets.IRIS)
# Load SQL
DataImporters.sql("url", "SELECT ...")
# Cache a sql import
DataImporters.sql("url", "SELECT ...")
.cached("path/to/cache")
.append(
# Add more data from a different source (with same features)
DataImporters.sql(...)
)
When the data has been loaded is usually the next set to process the data in some way. bender
will therefore provide different components that transforms features. Therefore making it easier to keep your logic consistent over multiple projects.
from bender.transformations import Transformations
DataImporters.data_set(DataSets.IRIS)
.process([
# pl exp = e^(petal length)
Transformations.exp_shift('petal length (cm)', output='pl exp'),
# Alternative to `exp_shift`
Transformations.compute('pl exp', lambda df: np.exp(df['petal length (cm)'])),
# purchases = mean value of the json price values
Transformations.unpack_json("purchases", key="price", output_feature="price", policy=UnpackPolicy.median_number()),
...
])
For view how the data is distribuated, is it also possible to explore the data.
from bender.explorers import Explorers
await (DataImporters.data_set(DataSets.IRIS)
.process([...])
.explore([
# Display all features in a hist
Explorers.histogram(target='target'),
# Display corr matrix and logs which features you could remove
Explorers.correlation(input_features),
# View how features relate in 2D
Explorers.pair_plot('target'),
])
There are many ways we can train and test, it is therefore easy to choose and switch between how it is done with bender
.
from bender.split_strategies import SplitStrategies
await (DataImporters.data_set(DataSets.IRIS)
.process([...])
# Have 70% as train and 30 as test
.split(SplitStrategies.ratio(0.7))
# Have 70% of each target group in train and the rest in test
.split(SplitStrategies.uniform_ratio("target", 0.7))
# Sorts by the key and taks the first 70% as train
.split(SplitStrategies.sorted_ratio("target", 0.7))
After you have split the data set into train and test, then you can train with the following.
from bender.model_trainers import Trainers
await (DataImporters.data_set(DataSets.IRIS)
.split(...)
.train(
# train kneighbours on the train test
Trainers.kneighbours(),
input_features=[...],
target_feature="target"
)
After you have a model will it be smart to test how well it works.
from bender.evaluators import Evaluators
await (DataImporters.data_set(DataSets.IRIS)
.split(...)
.train(...)
.evaluate([
# Only present the confusion matrix
Evaluators.confusion_matrix(),
Evaluators.roc_curve(),
Evaluators.precision_recall(),
])
At last would you need to store the model. You can therefore select one of manny exporters.
from bender.exporters import Exporters
await (DataImporters.data_set(DataSets.IRIS)
.split(...)
.train(...)
.export_model(Exporters.aws_s3(...))
ModelLoaders
.aws_s3("path/to/model", s3_config)
.import_data(
DataImporters.sql(sql_url, sql_query)
)
.predict()
ModelLoaders
.aws_s3(...)
.import_data(...)
.predict()
.extract(prediction_as="target", metadata=['entry_id'], exporter=DataExporters.disk("predictions.csv"))
An example of the IRIS data set which trains a model to perfection
await (DataImporters.data_set(DataSets.IRIS)
.process([
Transformations.exp_shift('petal length (cm)', output='pl exp'),
Transformations.exp_shift('petal width (cm)', output='pw exp'),
])
.explore([
Explorers.histogram(target='target'),
Explorers.correlation(input_features),
Explorers.pair_plot('target'),
])
.split(SplitStrategies.uniform_ratio("target", 0.7))
.train(Trainers.kneighbours(), input_features=input_features, target_feature="target")
.evaluate([
Evaluators.confusion_matrix()
])
.metric(Metrics.log_loss())
.run())
Below is a simple example for training a XGBoosted tree
DataImporters.sql(sql_url, sql_query)
.process([ # Preproces the data
# Extract advanced information from json data
Transformations.unpack_json("purchases", key="price", output_feature="price", policy=UnpackPolicy.median_number())
Transformations.log_normal_shift("y_values", "y_log"),
# Get date values from a date feature
Transformations.date_component("month", "date", output_feature="month_value"),
])
.split(SplitStrategies.ratio(0.7))
# Train a XGBoosted Tree model
.train(
Trainers.xgboost(),
input_features=['y_log', 'price', 'month_value', 'country', ...],
target_feature='did_buy_product_x'
)
.evaluate([
Evaluators.roc_curve(),
Evaluators.confusion_matrix(),
Evaluators.precision_recall(
# Overwrite where to export the evaluated result
Exporter.disk("precision-recall.png")
),
])
Below will a model be loaded from a AWS S3 bucket, preprocess the data, and predict the output. This will also make sure that the features are valid before predicting.
ModelLoaders
# Fetch Model
.aws_s3("path/to/model", s3_config)
# Load data
.import_data(
DataImporters.sql(sql_url, sql_query)
# Caching import localy for 1 day
.cached("cache/path")
)
# Preproces the data
.process([
Transformations.unpack_json(...),
...
])
# Predict the values
.predict()