A curated list of abstraction and reasoning. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers, awesome-architecture-search, awesome-self-supervised-learning, awesome-self-supervised-learning-for-graphs, awesome-graph-self-supervised-learning-based-recommendation
Please feel free to contact us if you have any trouble or discussion via pull requests
[TOC]
- Chollet, F. (2019). On the Measure of Intelligence. arXiv. https://doi.org/10.48550/arXiv.1911.01547 (repo)
- Acquaviva, S., Pu, Y., Kryven, M., Sechopoulos, T., Wong, C., Ecanow, G. E., Nye, M., Tessler, M. H., & Tenenbaum, J. B. (2021). Communicating Natural Programs to Humans and Machines. arXiv. https://doi.org/10.48550/arXiv.2106.07824 (repo)
- Ferré, S. (2021). First Steps of an Approach to the ARC Challenge based on Descriptive Grid Models and the Minimum Description Length Principle. arXiv. https://doi.org/10.48550/arXiv.2112.00848
- Nie, W., Yu, Z., Mao, L., Patel, A. B., Zhu, Y., & Anandkumar, A. (2020). Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and Reasoning. arXiv. https://doi.org/10.48550/arXiv.2010.00763 (repo)
- IconQA: Lu, P., Qiu, L., Chen, J., Xia, T., Zhao, Y., Zhang, W., Yu, Z., Liang, X., & Zhu, S. (2021). IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning. arXiv. https://doi.org/10.48550/arXiv.2110.13214 (repo) (website)
- GQA: Hudson, D. A., & Manning, C. D. (2019). GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. arXiv. https://doi.org/10.48550/arXiv.1902.09506 (repo) (website)
- NLVR: Suhr, A., Zhou, S., Zhang, A., Zhang, I., Bai, H., & Artzi, Y. (2018). A Corpus for Reasoning About Natural Language Grounded in Photographs. arXiv. https://doi.org/10.48550/arXiv.1811.00491 (repo) (Website)
- DVQA: Kafle, K., Price, B., Cohen, S., & Kanan, C. (2018). DVQA: Understanding Data Visualizations via Question Answering. arXiv. https://doi.org/10.48550/arXiv.1801.08163 (repo) (website)
- FigureQA: Kahou, S. E., Michalski, V., Atkinson, A., Kadar, A., Trischler, A., & Bengio, Y. (2017). FigureQA: An Annotated Figure Dataset for Visual Reasoning. arXiv. https://doi.org/10.48550/arXiv.1710.07300 (website) (repo)
- CLEVR: Johnson, J., Hariharan, B., Zitnick, C. L., & Girshick, R. (2016). CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. arXiv. https://doi.org/10.48550/arXiv.1612.06890 (website) (repo)
- VQA: Goyal, Y., Khot, T., Batra, D., & Parikh, D. (2016). Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. arXiv. https://doi.org/10.48550/arXiv.1612.00837 (website)
- VQA: Zhang, P., Goyal, Y., Batra, D., & Parikh, D. (2015). Yin and Yang: Balancing and Answering Binary Visual Questions. arXiv. https://doi.org/10.48550/arXiv.1511.05099 (website)
- VQA: Agrawal, A., Lu, J., Antol, S., Mitchell, M., Zitnick, C. L., Batra, D., & Parikh, D. (2015). VQA: Visual Question Answering. arXiv. https://doi.org/10.48550/arXiv.1505.00468 (website)
- I-RAVEN: Hu, S., Ma, Y., Liu, X., Wei, Y., & Bai, S. (2020). Stratified Rule-Aware Network for Abstract Visual Reasoning. arXiv. https://doi.org/10.48550/arXiv.2002.06838 (repo)
- RAVEN: Zhang, C., Gao, F., Jia, B., Zhu, Y., & Zhu, S. (2019). RAVEN: A Dataset for Relational and Analogical Visual rEasoNing. arXiv. https://doi.org/10.48550/arXiv.1903.02741 (website) (repo)
- PGM: Barrett, D. G., Hill, F., Santoro, A., Morcos, A. S., & Lillicrap, T. (2018). Measuring abstract reasoning in neural networks. arXiv. https://doi.org/10.48550/arXiv.1807.04225 (website) (repo)
- Christina M. Funke, Judy Borowski, Karolina Stosio, Wieland Brendel, Thomas S. A. Wallis, Matthias Bethge; Five points to check when comparing visual perception in humans and machines. Journal of Vision 2021;21(3):16. doi: https://doi.org/10.1167/jov.21.3.16.
- Miikkulainen, R., Forrest, S. A biological perspective on evolutionary computation. Nat Mach Intell 3, 9–15 (2021). https://doi.org/10.1038/s42256-020-00278-8
- Learn Data Science by Doing Kaggle Competitions: Abstraction and Reasoning Challenge (ARC)
- Modular Learning and Reasoning on ARC
- Solution by Alexander Fritzler (repo)
- Andrews, K. (2020). How to Study Animal Minds (Elements in the Philosophy of Biology). Cambridge: Cambridge University Press. doi:10.1017/9781108616522
- Padilla, P (2022) .The Abstraction and Reasoning Challenge (ARC), Pablo Padilla's Blog. Link
Contributions welcome! Read the contribution guidelines first.