Fuse batch normalization into convolution kernel #2629
Draft
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This introduces a simplification that merges the batch normalization inference operation with convolution weights (kernel). The key idea is that while the batch normalization parameters change during the training phase, but remain constant during inference. This means that the convolution kernel can be adjusted to incorporate the effects of batch normalization. This optimization is applied by default to the ResNet model in the ONNX framework.
I will provide more details about the test case and additional formulas later.
For now, I would like to know if there is interest in this?