Skip to content

Commit

Permalink
Improve performance of rounding dates in date_histogram aggregation (#…
Browse files Browse the repository at this point in the history
…9727)

* Improve performance of rounding dates in date_histogram aggregation

Signed-off-by: Ketan Verma <[email protected]>

* Minor refactoring changes

Signed-off-by: Ketan Verma <[email protected]>

---------

Signed-off-by: Ketan Verma <[email protected]>
  • Loading branch information
ketanv3 authored Sep 8, 2023
1 parent 967ef31 commit 7abfc17
Show file tree
Hide file tree
Showing 4 changed files with 261 additions and 9 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -182,6 +182,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
- Redefine telemetry context restoration and propagation ([#9617](https://github.com/opensearch-project/OpenSearch/pull/9617))
- Use non-concurrent path for sort request on timeseries index and field([#9562](https://github.com/opensearch-project/OpenSearch/pull/9562))
- Added sampler based on `Blanket Probabilistic Sampling rate` and `Override for on demand` ([#9621](https://github.com/opensearch-project/OpenSearch/issues/9621))
- Improve performance of rounding dates in date_histogram aggregation ([#9727](https://github.com/opensearch-project/OpenSearch/pull/9727))
- [Remote Store] Add support for Remote Translog Store stats in `_remotestore/stats/` API ([#9263](https://github.com/opensearch-project/OpenSearch/pull/9263))
- Add support for query profiler with concurrent aggregation ([#9248](https://github.com/opensearch-project/OpenSearch/pull/9248))
- Cleanup Unreferenced file on segment merge failure ([#9503](https://github.com/opensearch-project/OpenSearch/pull/9503))
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/

package org.opensearch.common;

import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.infra.Blackhole;

import java.util.Random;
import java.util.function.Supplier;

@Fork(value = 3)
@Warmup(iterations = 3, time = 1)
@Measurement(iterations = 1, time = 1)
@BenchmarkMode(Mode.Throughput)
public class ArrayRoundingBenchmark {

@Benchmark
public void round(Blackhole bh, Options opts) {
Rounding.Prepared rounding = opts.supplier.get();
for (long key : opts.queries) {
bh.consume(rounding.round(key));
}
}

@State(Scope.Benchmark)
public static class Options {
@Param({
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"14",
"16",
"18",
"20",
"22",
"24",
"26",
"29",
"32",
"37",
"41",
"45",
"49",
"54",
"60",
"64",
"74",
"83",
"90",
"98",
"108",
"118",
"128",
"144",
"159",
"171",
"187",
"204",
"229",
"256" })
public Integer size;

@Param({ "binary", "linear" })
public String type;

@Param({ "uniform", "skewed_edge", "skewed_center" })
public String distribution;

public long[] queries;
public Supplier<Rounding.Prepared> supplier;

@Setup
public void setup() {
Random random = new Random(size);
long[] values = new long[size];
for (int i = 1; i < values.length; i++) {
values[i] = values[i - 1] + 100;
}

long range = values[values.length - 1] - values[0] + 100;
long mean, stddev;
queries = new long[1000000];

switch (distribution) {
case "uniform": // all values equally likely.
for (int i = 0; i < queries.length; i++) {
queries[i] = values[0] + (nextPositiveLong(random) % range);
}
break;
case "skewed_edge": // distribution centered at p90 with ± 5% stddev.
mean = values[0] + (long) (range * 0.9);
stddev = (long) (range * 0.05);
for (int i = 0; i < queries.length; i++) {
queries[i] = Math.max(values[0], mean + (long) (random.nextGaussian() * stddev));
}
break;
case "skewed_center": // distribution centered at p50 with ± 5% stddev.
mean = values[0] + (long) (range * 0.5);
stddev = (long) (range * 0.05);
for (int i = 0; i < queries.length; i++) {
queries[i] = Math.max(values[0], mean + (long) (random.nextGaussian() * stddev));
}
break;
default:
throw new IllegalArgumentException("invalid distribution: " + distribution);
}

switch (type) {
case "binary":
supplier = () -> new Rounding.BinarySearchArrayRounding(values, size, null);
break;
case "linear":
supplier = () -> new Rounding.BidirectionalLinearSearchArrayRounding(values, size, null);
break;
default:
throw new IllegalArgumentException("invalid type: " + type);
}
}

private static long nextPositiveLong(Random random) {
return random.nextLong() & Long.MAX_VALUE;
}
}
}
100 changes: 91 additions & 9 deletions server/src/main/java/org/opensearch/common/Rounding.java
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
import org.opensearch.OpenSearchException;
import org.opensearch.common.LocalTimeOffset.Gap;
import org.opensearch.common.LocalTimeOffset.Overlap;
import org.opensearch.common.annotation.InternalApi;
import org.opensearch.common.time.DateUtils;
import org.opensearch.common.unit.TimeValue;
import org.opensearch.core.common.io.stream.StreamInput;
Expand Down Expand Up @@ -412,6 +413,21 @@ public Rounding build() {
}

private abstract class PreparedRounding implements Prepared {
/**
* The maximum limit up to which array-based prepared rounding is used.
* 128 is a power of two that isn't huge. We might be able to do
* better if the limit was based on the actual type of prepared
* rounding but this'll do for now.
*/
private static final int DEFAULT_ARRAY_ROUNDING_MAX_THRESHOLD = 128;

/**
* The maximum limit up to which linear search is used, otherwise binary search is used.
* This is because linear search is much faster on small arrays.
* Benchmark results: <a href="https://github.com/opensearch-project/OpenSearch/pull/9727">PR #9727</a>
*/
private static final int LINEAR_SEARCH_ARRAY_ROUNDING_MAX_THRESHOLD = 64;

/**
* Attempt to build a {@link Prepared} implementation that relies on pre-calcuated
* "round down" points. If there would be more than {@code max} points then return
Expand All @@ -435,7 +451,9 @@ protected Prepared maybeUseArray(long minUtcMillis, long maxUtcMillis, int max)
values = ArrayUtil.grow(values, i + 1);
values[i++] = rounded;
}
return new ArrayRounding(values, i, this);
return i <= LINEAR_SEARCH_ARRAY_ROUNDING_MAX_THRESHOLD
? new BidirectionalLinearSearchArrayRounding(values, i, this)
: new BinarySearchArrayRounding(values, i, this);
}
}

Expand Down Expand Up @@ -521,12 +539,11 @@ private LocalDateTime truncateLocalDateTime(LocalDateTime localDateTime) {

@Override
public Prepared prepare(long minUtcMillis, long maxUtcMillis) {
/*
* 128 is a power of two that isn't huge. We might be able to do
* better if the limit was based on the actual type of prepared
* rounding but this'll do for now.
*/
return prepareOffsetOrJavaTimeRounding(minUtcMillis, maxUtcMillis).maybeUseArray(minUtcMillis, maxUtcMillis, 128);
return prepareOffsetOrJavaTimeRounding(minUtcMillis, maxUtcMillis).maybeUseArray(
minUtcMillis,
maxUtcMillis,
PreparedRounding.DEFAULT_ARRAY_ROUNDING_MAX_THRESHOLD
);
}

private TimeUnitPreparedRounding prepareOffsetOrJavaTimeRounding(long minUtcMillis, long maxUtcMillis) {
Expand Down Expand Up @@ -1330,14 +1347,19 @@ public static Rounding read(StreamInput in) throws IOException {
/**
* Implementation of {@link Prepared} using pre-calculated "round down" points.
*
* <p>
* It uses binary search to find the greatest round-down point less than or equal to the given timestamp.
*
* @opensearch.internal
*/
private static class ArrayRounding implements Prepared {
@InternalApi
static class BinarySearchArrayRounding implements Prepared {
private final long[] values;
private final int max;
private final Prepared delegate;

private ArrayRounding(long[] values, int max, Prepared delegate) {
BinarySearchArrayRounding(long[] values, int max, Prepared delegate) {
assert max > 0 : "at least one round-down point must be present";
this.values = values;
this.max = max;
this.delegate = delegate;
Expand Down Expand Up @@ -1365,4 +1387,64 @@ public double roundingSize(long utcMillis, DateTimeUnit timeUnit) {
return delegate.roundingSize(utcMillis, timeUnit);
}
}

/**
* Implementation of {@link Prepared} using pre-calculated "round down" points.
*
* <p>
* It uses linear search to find the greatest round-down point less than or equal to the given timestamp.
* For small inputs (&le; 64 elements), this can be much faster than binary search as it avoids the penalty of
* branch mispredictions and pipeline stalls, and accesses memory sequentially.
*
* <p>
* It uses "meet in the middle" linear search to avoid the worst case scenario when the desired element is present
* at either side of the array. This is helpful for time-series data where velocity increases over time, so more
* documents are likely to find a greater timestamp which is likely to be present on the right end of the array.
*
* @opensearch.internal
*/
@InternalApi
static class BidirectionalLinearSearchArrayRounding implements Prepared {
private final long[] ascending;
private final long[] descending;
private final Prepared delegate;

BidirectionalLinearSearchArrayRounding(long[] values, int max, Prepared delegate) {
assert max > 0 : "at least one round-down point must be present";
this.delegate = delegate;
int len = (max + 1) >>> 1; // rounded-up to handle odd number of values
ascending = new long[len];
descending = new long[len];

for (int i = 0; i < len; i++) {
ascending[i] = values[i];
descending[i] = values[max - i - 1];
}
}

@Override
public long round(long utcMillis) {
int i = 0;
for (; i < ascending.length; i++) {
if (descending[i] <= utcMillis) {
return descending[i];
}
if (ascending[i] > utcMillis) {
assert i > 0 : "utcMillis must be after " + ascending[0];
return ascending[i - 1];
}
}
return ascending[i - 1];
}

@Override
public long nextRoundingValue(long utcMillis) {
return delegate.nextRoundingValue(utcMillis);
}

@Override
public double roundingSize(long utcMillis, DateTimeUnit timeUnit) {
return delegate.roundingSize(utcMillis, timeUnit);
}
}
}
22 changes: 22 additions & 0 deletions server/src/test/java/org/opensearch/common/RoundingTests.java
Original file line number Diff line number Diff line change
Expand Up @@ -1143,6 +1143,28 @@ public void testNonMillisecondsBasedUnitCalendarRoundingSize() {
assertThat(prepared.roundingSize(thirdQuarter, Rounding.DateTimeUnit.HOUR_OF_DAY), closeTo(2208.0, 0.000001));
}

public void testArrayRoundingImplementations() {
int length = randomIntBetween(1, 256);
long[] values = new long[length];
for (int i = 1; i < values.length; i++) {
values[i] = values[i - 1] + (randomNonNegativeLong() % 100);
}

Rounding.Prepared binarySearchImpl = new Rounding.BinarySearchArrayRounding(values, length, null);
Rounding.Prepared linearSearchImpl = new Rounding.BidirectionalLinearSearchArrayRounding(values, length, null);

for (int i = 0; i < 100000; i++) {
long key = values[0] + (randomNonNegativeLong() % (100 + values[length - 1] - values[0]));
assertEquals(binarySearchImpl.round(key), linearSearchImpl.round(key));
}

AssertionError exception = expectThrows(AssertionError.class, () -> { binarySearchImpl.round(values[0] - 1); });
assertEquals("utcMillis must be after " + values[0], exception.getMessage());

exception = expectThrows(AssertionError.class, () -> { linearSearchImpl.round(values[0] - 1); });
assertEquals("utcMillis must be after " + values[0], exception.getMessage());
}

private void assertInterval(long rounded, long nextRoundingValue, Rounding rounding, int minutes, ZoneId tz) {
assertInterval(rounded, dateBetween(rounded, nextRoundingValue), nextRoundingValue, rounding, tz);
long millisPerMinute = 60_000;
Expand Down

0 comments on commit 7abfc17

Please sign in to comment.