Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

C++ Demo SFace Recognizer #259

Merged
merged 1 commit into from
Jun 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions models/face_recognition_sface/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
cmake_minimum_required(VERSION 3.24.0)
project(opencv_zoo_face_recognition_sface)

set(OPENCV_VERSION "4.9.0")
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")

# Find OpenCV
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})

add_executable(demo demo.cpp)
target_link_libraries(demo ${OpenCV_LIBS})
17 changes: 17 additions & 0 deletions models/face_recognition_sface/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ Results of accuracy evaluation with [tools/eval](../../tools/eval).

Run the following command to try the demo:

### Python
```shell
# recognize on images
python demo.py --target /path/to/image1 --query /path/to/image2
Expand All @@ -32,6 +33,22 @@ python demo.py --target /path/to/image1 --query /path/to/image2
python demo.py --help
```

### C++
Install latest OpenCV and CMake >= 3.24.0 to get started with:

```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build

# detect on camera input
./build/demo -t=/path/to/target_face
# detect on an image
./build/demo -t=/path/to/target_face -q=/path/to/query_face -v
# get help messages
./build/demo -h
```

### Example outputs

![sface demo](./example_outputs/demo.jpg)
Expand Down
322 changes: 322 additions & 0 deletions models/face_recognition_sface/demo.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,322 @@
#include "opencv2/opencv.hpp"
#include "opencv2/core/types.hpp"

#include <string>
#include <vector>

const std::vector<std::pair<int, int>> backend_target_pairs = {
{cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16},
{cv::dnn::DNN_BACKEND_TIMVX, cv::dnn::DNN_TARGET_NPU},
{cv::dnn::DNN_BACKEND_CANN, cv::dnn::DNN_TARGET_NPU}
};

class YuNet
{
public:
YuNet(const std::string& model_path,
const cv::Size& input_size,
const float conf_threshold,
const float nms_threshold,
const int top_k,
const int backend_id,
const int target_id)
{
_detector = cv::FaceDetectorYN::create(
model_path, "", input_size, conf_threshold, nms_threshold, top_k, backend_id, target_id);
}

void setInputSize(const cv::Size& input_size)
{
_detector->setInputSize(input_size);
}

void setTopK(const int top_k)
{
_detector->setTopK(top_k);
}

cv::Mat infer(const cv::Mat& image)
{
cv::Mat result;
_detector->detect(image, result);
return result;
}

private:
cv::Ptr<cv::FaceDetectorYN> _detector;
};

class SFace
{
public:
SFace(const std::string& model_path,
const int backend_id,
const int target_id,
const int distance_type)
: _distance_type(static_cast<cv::FaceRecognizerSF::DisType>(distance_type))
{
_recognizer = cv::FaceRecognizerSF::create(model_path, "", backend_id, target_id);
}

cv::Mat extractFeatures(const cv::Mat& orig_image, const cv::Mat& face_image)
{
// Align and crop detected face from original image
cv::Mat target_aligned;
_recognizer->alignCrop(orig_image, face_image, target_aligned);
// Extract features from cropped detected face
cv::Mat target_features;
_recognizer->feature(target_aligned, target_features);
return target_features.clone();
}

std::pair<double, bool> matchFeatures(const cv::Mat& target_features, const cv::Mat& query_features)
{
const double score = _recognizer->match(target_features, query_features, _distance_type);
if (_distance_type == cv::FaceRecognizerSF::DisType::FR_COSINE)
{
return {score, score >= _threshold_cosine};
}
return {score, score <= _threshold_norml2};
}

private:
cv::Ptr<cv::FaceRecognizerSF> _recognizer;
cv::FaceRecognizerSF::DisType _distance_type;
double _threshold_cosine = 0.363;
double _threshold_norml2 = 1.128;
};

cv::Mat visualize(const cv::Mat& image,
const cv::Mat& faces,
const std::vector<std::pair<double, bool>>& matches,
const float fps = -0.1F,
const cv::Size& target_size = cv::Size(512, 512))
{
static const cv::Scalar matched_box_color{0, 255, 0};
static const cv::Scalar mismatched_box_color{0, 0, 255};

if (fps >= 0)
{
cv::Mat output_image = image.clone();

const int x1 = static_cast<int>(faces.at<float>(0, 0));
const int y1 = static_cast<int>(faces.at<float>(0, 1));
const int w = static_cast<int>(faces.at<float>(0, 2));
const int h = static_cast<int>(faces.at<float>(0, 3));
const auto match = matches.at(0);

cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
// Draw bounding box
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Draw match score
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
// Draw FPS
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);

return output_image;
}

cv::Mat output_image = cv::Mat::zeros(target_size, CV_8UC3);

// Determine new height and width of image with aspect ratio of original image
const double ratio = std::min(static_cast<double>(target_size.height) / image.rows,
static_cast<double>(target_size.width) / image.cols);
const int new_height = static_cast<int>(image.rows * ratio);
const int new_width = static_cast<int>(image.cols * ratio);

// Resize the original image, maintaining aspect ratio
cv::Mat resize_out;
cv::resize(image, resize_out, cv::Size(new_width, new_height), cv::INTER_LINEAR);

// Determine top left corner in resized dimensions
const int top = std::max(0, target_size.height - new_height) / 2;
const int left = std::max(0, target_size.width - new_width) / 2;

// Copy resized image into target output image
const cv::Rect roi = cv::Rect(cv::Point(left, top), cv::Size(new_width, new_height));
cv::Mat out_sub_image = output_image(roi);
resize_out.copyTo(out_sub_image);

for (int i = 0; i < faces.rows; ++i)
{
const int x1 = static_cast<int>(faces.at<float>(i, 0) * ratio) + left;
const int y1 = static_cast<int>(faces.at<float>(i, 1) * ratio) + top;
const int w = static_cast<int>(faces.at<float>(i, 2) * ratio);
const int h = static_cast<int>(faces.at<float>(i, 3) * ratio);
const auto match = matches.at(i);

cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
// Draw bounding box
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Draw match score
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
}
return output_image;
}

int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv,
// General options
"{help h | | Print this message}"
"{backend_target b | 0 | Set DNN backend target pair:\n"
"0: (default) OpenCV implementation + CPU,\n"
"1: CUDA + GPU (CUDA),\n"
"2: CUDA + GPU (CUDA FP16),\n"
"3: TIM-VX + NPU,\n"
"4: CANN + NPU}"
"{save s | false | Whether to save result image or not}"
"{vis v | false | Whether to visualize result image or not}"
// SFace options
"{target_face t | | Set path to input image 1 (target face)}"
"{query_face q | | Set path to input image 2 (query face), omit if using camera}"
"{model m | face_recognition_sface_2021dec.onnx | Set path to the model}"
"{distance_type d | 0 | 0 = cosine, 1 = norm_l1}"
// YuNet options
"{yunet_model | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Set path to the YuNet model}"
"{detect_threshold | 0.9 | Set the minimum confidence for the model\n"
"to identify a face. Filter out faces of\n"
"conf < conf_threshold}"
"{nms_threshold | 0.3 | Set the threshold to suppress overlapped boxes.\n"
"Suppress boxes if IoU(box1, box2) >= nms_threshold\n"
", the one of higher score is kept.}"
"{top_k | 5000 | Keep top_k bounding boxes before NMS}"
);

if (parser.has("help"))
{
parser.printMessage();
return 0;
}
// General CLI options
const int backend = parser.get<int>("backend_target");
const bool save_flag = parser.get<bool>("save");
const bool vis_flag = parser.get<bool>("vis");
const int backend_id = backend_target_pairs.at(backend).first;
const int target_id = backend_target_pairs.at(backend).second;

// YuNet CLI options
const std::string detector_model_path = parser.get<std::string>("yunet_model");
const float detect_threshold = parser.get<float>("detect_threshold");
const float nms_threshold = parser.get<float>("nms_threshold");
const int top_k = parser.get<int>("top_k");

// Use YuNet as the detector backend
auto face_detector = YuNet(
detector_model_path, cv::Size(320, 320), detect_threshold, nms_threshold, top_k, backend_id, target_id);

// SFace CLI options
const std::string target_path = parser.get<std::string>("target_face");
const std::string query_path = parser.get<std::string>("query_face");
const std::string model_path = parser.get<std::string>("model");
const int distance_type = parser.get<int>("distance_type");

auto face_recognizer = SFace(model_path, backend_id, target_id, distance_type);

if (target_path.empty())
{
CV_Error(cv::Error::StsError, "Path to target image " + target_path + " not found");
}

cv::Mat target_image = cv::imread(target_path);
// Detect single face in target image
face_detector.setInputSize(target_image.size());
face_detector.setTopK(1);
cv::Mat target_face = face_detector.infer(target_image);
// Extract features from target face
cv::Mat target_features = face_recognizer.extractFeatures(target_image, target_face.row(0));

if (!query_path.empty()) // use image
{
// Detect any faces in query image
cv::Mat query_image = cv::imread(query_path);
face_detector.setInputSize(query_image.size());
face_detector.setTopK(5000);
cv::Mat query_faces = face_detector.infer(query_image);

// Store match scores for visualization
std::vector<std::pair<double, bool>> matches;

for (int i = 0; i < query_faces.rows; ++i)
{
// Extract features from query face
cv::Mat query_features = face_recognizer.extractFeatures(query_image, query_faces.row(i));
// Measure similarity of target face to query face
const auto match = face_recognizer.matchFeatures(target_features, query_features);
matches.push_back(match);

const int x1 = static_cast<int>(query_faces.at<float>(i, 0));
const int y1 = static_cast<int>(query_faces.at<float>(i, 1));
const int w = static_cast<int>(query_faces.at<float>(i, 2));
const int h = static_cast<int>(query_faces.at<float>(i, 3));
const float conf = query_faces.at<float>(i, 14);

std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f, match=%.4f\n", i, x1, y1, w, h, conf, match.first);
}

if (save_flag || vis_flag)
{
auto vis_target = visualize(target_image, target_face, {{1.0, true}});
auto vis_query = visualize(query_image, query_faces, matches);
cv::Mat output_image;
cv::hconcat(vis_target, vis_query, output_image);

if (save_flag)
{
std::cout << "Results are saved to result.jpg\n";
cv::imwrite("result.jpg", output_image);
}
if (vis_flag)
{
cv::namedWindow(query_path, cv::WINDOW_AUTOSIZE);
cv::imshow(query_path, output_image);
cv::waitKey(0);
}
}
}
else // use video capture
{
const int device_id = 0;
auto cap = cv::VideoCapture(device_id);
const int w = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH));
const int h = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT));
face_detector.setInputSize(cv::Size(w, h));

auto tick_meter = cv::TickMeter();
cv::Mat query_frame;

while (cv::waitKey(1) < 0)
{
bool has_frame = cap.read(query_frame);
if (!has_frame)
{
std::cout << "No frames grabbed! Exiting ...\n";
break;
}
tick_meter.start();
// Detect faces from webcam image
cv::Mat query_faces = face_detector.infer(query_frame);
tick_meter.stop();

// Extract features from query face
cv::Mat query_features = face_recognizer.extractFeatures(query_frame, query_faces.row(0));
// Measure similarity of target face to query face
const auto match = face_recognizer.matchFeatures(target_features, query_features);

const auto fps = static_cast<float>(tick_meter.getFPS());

auto vis_target = visualize(target_image, target_face, {{1.0, true}}, -0.1F, cv::Size(w, h));
auto vis_query = visualize(query_frame, query_faces, {match}, fps);
cv::Mat output_image;
cv::hconcat(vis_target, vis_query, output_image);

// Visualize in a new window
cv::imshow("SFace Demo", output_image);

tick_meter.reset();
}
}
return 0;
}