Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhancements and Optimizations for Tensor Flow Model Script #351

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
177 changes: 177 additions & 0 deletions Enhance_transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
import numpy as np
import tensorflow as tf
from tensorflow.contrib.training import HParams

def default_hparams():
return HParams(
n_vocab=0,
n_ctx=1024,
n_embd=768,
n_head=12,
n_layer=12,
dropout_rate=0.1, # Added dropout rate for regularization
learning_rate=0.001 # Added learning rate parameter
)

def shape_list(x):
"""Deal with dynamic shape in TensorFlow cleanly."""
static = x.shape.as_list()
dynamic = tf.shape(x)
return [dynamic[i] if s is None else s for i, s in enumerate(static)]

def softmax(x, axis=-1):
x = x - tf.reduce_max(x, axis=axis, keepdims=True)
ex = tf.exp(x)
return ex / tf.reduce_sum(ex, axis=axis, keepdims=True)

def gelu(x):
return 0.5 * x * (1 + tf.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))

def norm(x, scope, *, axis=-1, epsilon=1e-5):
"""Normalize to mean = 0, std = 1, then do a diagonal affine transform."""
with tf.variable_scope(scope):
n_state = x.shape[-1].value
g = tf.get_variable('g', [n_state], initializer=tf.constant_initializer(1))
b = tf.get_variable('b', [n_state], initializer=tf.constant_initializer(0))
u = tf.reduce_mean(x, axis=axis, keepdims=True)
s = tf.reduce_mean(tf.square(x - u), axis=axis, keepdims=True)
x = (x - u) * tf.rsqrt(s + epsilon)
x = x * g + b
return x

def split_states(x, n):
"""Reshape the last dimension of x into [n, x.shape[-1]//n]."""
*start, m = shape_list(x)
return tf.reshape(x, start + [n, m // n])

def merge_states(x):
"""Smash the last two dimensions of x into a single dimension."""
*start, a, b = shape_list(x)
return tf.reshape(x, start + [a * b])

def conv1d(x, scope, nf, *, w_init_stdev=0.02):
with tf.variable_scope(scope):
*start, nx = shape_list(x)
w = tf.get_variable('w', [1, nx, nf], initializer=tf.random_normal_initializer(stddev=w_init_stdev))
b = tf.get_variable('b', [nf], initializer=tf.constant_initializer(0))
c = tf.reshape(tf.matmul(tf.reshape(x, [-1, nx]), tf.reshape(w, [-1, nf])) + b, start + [nf])
return c

def attention_mask(nd, ns, *, dtype):
"""1's in the lower triangle, counting from the lower right corner."""
i = tf.range(nd)[:, None]
j = tf.range(ns)
m = i >= j - ns + nd
return tf.cast(m, dtype)

def attn(x, scope, n_state, *, past, hparams):
assert x.shape.ndims == 3 # Should be [batch, sequence, features]
assert n_state % hparams.n_head == 0
if past is not None:
assert past.shape.ndims == 5 # Should be [batch, 2, heads, sequence, features], where 2 is [k, v]

def split_heads(x):
return tf.transpose(split_states(x, hparams.n_head), [0, 2, 1, 3])

def merge_heads(x):
return merge_states(tf.transpose(x, [0, 2, 1, 3]))

def mask_attn_weights(w):
_, _, nd, ns = shape_list(w)
b = attention_mask(nd, ns, dtype=w.dtype)
b = tf.reshape(b, [1, 1, nd, ns])
w = w * b - tf.cast(1e10, w.dtype) * (1 - b)
return w

def multihead_attn(q, k, v):
w = tf.matmul(q, k, transpose_b=True)
w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype))
w = mask_attn_weights(w)
w = softmax(w)
a = tf.matmul(w, v)
return a

with tf.variable_scope(scope):
c = conv1d(x, 'c_attn', n_state * 3)
q, k, v = map(split_heads, tf.split(c, 3, axis=2))
present = tf.stack([k, v], axis=1)
if past is not None:
pk, pv = tf.unstack(past, axis=1)
k = tf.concat([pk, k], axis=-2)
v = tf.concat([pv, v], axis=-2)
a = multihead_attn(q, k, v)
a = merge_heads(a)
a = conv1d(a, 'c_proj', n_state)
return a, present

def mlp(x, scope, n_state, *, hparams):
with tf.variable_scope(scope):
nx = x.shape[-1].value
h = gelu(conv1d(x, 'c_fc', n_state))
h2 = conv1d(h, 'c_proj', nx)
return h2

def block(x, scope, *, past, hparams):
with tf.variable_scope(scope):
nx = x.shape[-1].value
a, present = attn(norm(x, 'ln_1'), 'attn', nx, past=past, hparams=hparams)
x = x + a
m = mlp(norm(x, 'ln_2'), 'mlp', nx * 4, hparams=hparams)
x = x + m
x = tf.nn.dropout(x, rate=hparams.dropout_rate) # Apply dropout
return x, present

def past_shape(*, hparams, batch_size=None, sequence=None):
return [batch_size, hparams.n_layer, 2, hparams.n_head, sequence, hparams.n_embd // hparams.n_head]

def expand_tile(value, size):
"""Add a new axis of given size."""
value = tf.convert_to_tensor(value, name='value')
ndims = value.shape.ndims
return tf.tile(tf.expand_dims(value, axis=0), [size] + [1] * ndims)

def positions_for(tokens, past_length):
batch_size = tf.shape(tokens)[0]
nsteps = tf.shape(tokens)[1]
return expand_tile(past_length + tf.range(nsteps), batch_size)

def model(hparams, X, past=None, scope='model', reuse=False):
with tf.variable_scope(scope, reuse=reuse):
results = {}
batch, sequence = shape_list(X)

wpe = tf.get_variable('wpe', [hparams.n_ctx, hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.01))
wte = tf.get_variable('wte', [hparams.n_vocab, hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.02))
past_length = 0 if past is None else tf.shape(past)[-2]
h = tf.gather(wte, X) + tf.gather(wpe, positions_for(X, past_length))

# Transformer
presents = []
pasts = tf.unstack(past, axis=1) if past is not None else [None] * hparams.n_layer
assert len(pasts) == hparams.n_layer
for layer, past in enumerate(pasts):
h, present = block(h, 'h%d' % layer, past=past, hparams=hparams)
presents.append(present)
results['present'] = tf.stack(presents, axis=1)
h = norm(h, 'ln_f')

# Language model loss. Do tokens <n predict token n?
h_flat = tf.reshape(h, [batch * sequence, hparams.n_embd])
logits = tf.matmul(h_flat, wte, transpose_b=True)
logits = tf.reshape(logits, [batch, sequence, hparams.n_vocab])
results['logits'] = logits

# Implement dynamic learning rate adjustments based on loss
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.train.exponential_decay(
hparams.learning_rate,
global_step,
decay_steps=1000,
decay_rate=0.96,
staircase=True
)
results['learning_rate'] = learning_rate

return results