Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OrdinalEncoder handle encoded_missing_value and unknown_value #1132

Merged
merged 4 commits into from
Nov 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 27 additions & 1 deletion skl2onnx/operator_converters/ordinal_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,12 @@ def convert_sklearn_ordinal_encoder(
result = []
input_idx = 0
dimension_idx = 0

# handle the 'handle_unknown=use_encoded_value' case
default_value = (
None if ordinal_op.handle_unknown == "error" else int(ordinal_op.unknown_value)
)

for categories in ordinal_op.categories_:
if len(categories) == 0:
continue
Expand Down Expand Up @@ -82,6 +88,7 @@ def convert_sklearn_ordinal_encoder(
feature_column = casted_feature_column

attrs = {"name": scope.get_unique_operator_name("LabelEncoder")}

if isinstance(feature_column.type, FloatTensorType):
attrs["keys_floats"] = np.array(
[float(s) for s in categories], dtype=np.float32
Expand All @@ -94,7 +101,26 @@ def convert_sklearn_ordinal_encoder(
attrs["keys_strings"] = np.array(
[str(s).encode("utf-8") for s in categories]
)
attrs["values_int64s"] = np.arange(len(categories)).astype(np.int64)

# hanlde encoded_missing_value
if not np.isnan(ordinal_op.encoded_missing_value) and (
isinstance(categories[-1], float) and np.isnan(categories[-1])
):
# sklearn always places np.nan as the last entry
# in its cathegories if it was in the training data
# => we simply add the 'ordinal_op.encoded_missing_value'
# as our last entry in 'values_int64s' if it was in the training data
encoded_missing_value = np.array(
[int(ordinal_op.encoded_missing_value)]
).astype(np.int64)
attrs["values_int64s"] = np.concatenate(
(np.arange(len(categories) - 1).astype(np.int64), encoded_missing_value)
)
else:
attrs["values_int64s"] = np.arange(len(categories)).astype(np.int64)

if default_value:
attrs["default_int64"] = default_value

result.append(scope.get_unique_variable_name("ordinal_output"))
label_encoder_output = scope.get_unique_variable_name("label_encoder")
Expand Down
116 changes: 115 additions & 1 deletion tests/test_sklearn_ordinal_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def test_model_ordinal_encoder(self):
[("input", Int64TensorType([None, 3]))],
target_opset=TARGET_OPSET,
)
self.assertTrue(model_onnx is not None)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
data, model, model_onnx, basename="SklearnOrdinalEncoderInt64-SkipDim1"
)
Expand Down Expand Up @@ -182,6 +182,120 @@ def test_model_ordinal_encoder_cat_list(self):
data, model, model_onnx, basename="SklearnOrdinalEncoderCatList"
)

@unittest.skipIf(
not ordinal_encoder_support(),
reason="OrdinalEncoder was not available before 0.20",
)
def test_model_ordinal_encoder_unknown_value(self):
from onnxruntime import InferenceSession

model = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=42)
data = np.array([["a"], ["b"], ["c"], ["d"]], dtype=np.object_)
data_with_missing_value = np.array(
[["a"], ["b"], ["c"], ["d"], [np.nan], ["e"], [None]], dtype=np.object_
)

model.fit(data)
# 'np.nan','e' and 'None' become 42.
expected = model.transform(data_with_missing_value)

model_onnx = convert_sklearn(
model,
"scikit-learn ordinal encoder",
[("input", StringTensorType([None, 1]))],
target_opset=TARGET_OPSET,
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
data, model, model_onnx, basename="SklearnOrdinalEncoderUnknownValue"
)

sess = InferenceSession(
model_onnx.SerializeToString(), providers=["CPUExecutionProvider"]
)
got = sess.run(
None,
{
"input": data_with_missing_value,
},
)

assert_almost_equal(expected.reshape(-1), got[0].reshape(-1))

@unittest.skipIf(
not ordinal_encoder_support(),
reason="OrdinalEncoder was not available before 0.20",
)
def test_model_ordinal_encoder_encoded_missing_value(self):
from onnxruntime import InferenceSession

model = OrdinalEncoder(encoded_missing_value=42)
data = np.array([["a"], ["b"], [np.nan], ["c"], ["d"]], dtype=np.object_)

# 'np.nan' becomes 42
expected = model.fit_transform(data)

model_onnx = convert_sklearn(
model,
"scikit-learn ordinal encoder",
[("input", StringTensorType([None, 1]))],
target_opset=TARGET_OPSET,
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
data, model, model_onnx, basename="SklearnOrdinalEncoderEncodedMissingValue"
)

sess = InferenceSession(
model_onnx.SerializeToString(), providers=["CPUExecutionProvider"]
)
got = sess.run(
None,
{
"input": data,
},
)

assert_almost_equal(expected.reshape(-1), got[0].reshape(-1))

@unittest.skipIf(
not ordinal_encoder_support(),
reason="OrdinalEncoder was not available before 0.20",
)
def test_model_ordinal_encoder_encoded_missing_value_no_nan(self):
from onnxruntime import InferenceSession

model = OrdinalEncoder(encoded_missing_value=42)
data = np.array([["a"], ["b"], ["c"], ["d"]], dtype=np.object_)

expected = model.fit_transform(data)

model_onnx = convert_sklearn(
model,
"scikit-learn ordinal encoder",
[("input", StringTensorType([None, 1]))],
target_opset=TARGET_OPSET,
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
data,
model,
model_onnx,
basename="SklearnOrdinalEncoderEncodedMissingValueNoNan",
)

sess = InferenceSession(
model_onnx.SerializeToString(), providers=["CPUExecutionProvider"]
)
got = sess.run(
None,
{
"input": data,
},
)

assert_almost_equal(expected.reshape(-1), got[0].reshape(-1))

@unittest.skipIf(
not set_output_support(),
reason="'ColumnTransformer' object has no attribute 'set_output'",
Expand Down
Loading