docs/
report.md Report document
task.md Task description
pylangkit/
naive_bayes.py Implementation of Naive Bayes language classification algorithm
resources/
lang_data.csv Input dataset
lang_data_test.csv Test dataset
lang_data_train.csv Train dataset
test_model.pickle Pickled trained model for testing purposes
train_model.pickle Pickled trained model for classification demo task
tests/
test_naive_bayes.py Tests of Naive Bayes language classification algorithm
demo.py Demo app of language classification task
Input_Data_Analysis_and_Model_Training.ipynb Ipyton notebook with data analysis, training model, classification task and evaluation.
LICENSE License file
README.md this file with short description of project
requirements.txt Requirements of libraries and packages
setup.py Setup file for package installation
Install virtualenv
sudo apt install python-pip
pip install virtualenvwrapper
Add next lines to /.bashrc (/.profile)
export WORKON_HOME=$HOME/.virtualenvs
export PROJECT_HOME=$HOME/Devel
# load virtualenvwrapper for python (after custom PATHs)
venvwrap="virtualenvwrapper.sh"
/usr/bin/which $venvwrap
if [ $? -eq 0 ]; then
venvwrap=`/usr/bin/which $venvwrap`
source $venvwrap
fi
Run script
. ~/.local/bin/virtualenvwrapper.sh
Create virtual environment
mkvirtualenv -p python3.5 langkit
pip install -r requirements.txt
pip install -e .
pytest tests
python demo.py