Skip to content

Commit

Permalink
Merge branch 'main' into omer/run-loader
Browse files Browse the repository at this point in the history
  • Loading branch information
omer-dayan authored Nov 16, 2024
2 parents a8d174e + 8b6725b commit efa4705
Show file tree
Hide file tree
Showing 96 changed files with 2,455 additions and 1,138 deletions.
21 changes: 8 additions & 13 deletions .buildkite/release-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -6,28 +6,23 @@ steps:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "mv artifacts/dist/$(ls artifacts/dist) artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl"
- "aws s3 cp artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl s3://vllm-wheels/$BUILDKITE_COMMIT/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl"
- "aws s3 cp artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl s3://vllm-wheels/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl"
- "bash .buildkite/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"

- block: "Build CUDA 11.8 wheel"
key: block-build-cu118-wheel

# Note(simon): We can always build CUDA 11.8 wheel to ensure the build is working.
# However, this block can be uncommented to save some compute hours.
# - block: "Build CUDA 11.8 wheel"
# key: block-build-cu118-wheel

- label: "Build wheel - CUDA 11.8"
depends_on: block-build-cu118-wheel
# depends_on: block-build-cu118-wheel
agents:
queue: cpu_queue
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
# rename the files to change linux -> manylinux1
- "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/"
- "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/"
- "bash .buildkite/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
6 changes: 3 additions & 3 deletions .buildkite/run-cpu-test-ppc64le.sh
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,9 @@ function cpu_tests() {
decord einops librosa peft Pillow sentence-transformers soundfile \
transformers_stream_generator matplotlib datamodel_code_generator
pip install torchvision --index-url https://download.pytorch.org/whl/cpu
pytest -v -s tests/models/embedding/language
pytest -v -s tests/models/encoder_decoder/language
pytest -v -s tests/models/decoder_only/language/test_models.py
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"

Expand Down
22 changes: 11 additions & 11 deletions .buildkite/run-cpu-test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -9,19 +9,19 @@ CORE_RANGE=${CORE_RANGE:-48-95}
NUMA_NODE=${NUMA_NODE:-1}

# Try building the docker image
numactl -C $CORE_RANGE -N $NUMA_NODE docker build -t cpu-test -f Dockerfile.cpu .
numactl -C $CORE_RANGE -N $NUMA_NODE docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build -t cpu-test -f Dockerfile.cpu .
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" -t cpu-test-avx2 -f Dockerfile.cpu .

# Setup cleanup
remove_docker_container() { docker rm -f cpu-test cpu-test-avx2 || true; }
trap remove_docker_container EXIT
remove_docker_container

# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=$CORE_RANGE \
--cpuset-mems=$NUMA_NODE --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=$CORE_RANGE \
--cpuset-mems=$NUMA_NODE --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus="$CORE_RANGE" \
--cpuset-mems="$NUMA_NODE" --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test-avx2 cpu-test-avx2

function cpu_tests() {
set -e
Expand All @@ -38,9 +38,9 @@ function cpu_tests() {
decord einops librosa peft Pillow sentence-transformers soundfile \
transformers_stream_generator matplotlib datamodel_code_generator
pip install torchvision --index-url https://download.pytorch.org/whl/cpu
pytest -v -s tests/models/embedding/language
pytest -v -s tests/models/encoder_decoder/language
pytest -v -s tests/models/decoder_only/language/test_models.py
pytest -v -s tests/models/decoder_only/language -m cpu_model
pytest -v -s tests/models/embedding/language -m cpu_model
pytest -v -s tests/models/encoder_decoder/language -m cpu_model
pytest -v -s tests/models/decoder_only/audio_language -m cpu_model
pytest -v -s tests/models/decoder_only/vision_language -m cpu_model"

Expand All @@ -61,7 +61,7 @@ function cpu_tests() {
docker exec cpu-test bash -c "
set -e
export VLLM_CPU_KVCACHE_SPACE=10
export VLLM_CPU_OMP_THREADS_BIND=$CORE_RANGE
export VLLM_CPU_OMP_THREADS_BIND=$1
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
Expand All @@ -75,4 +75,4 @@ function cpu_tests() {

# All of CPU tests are expected to be finished less than 25 mins.
export -f cpu_tests
timeout 25m bash -c "cpu_tests"
timeout 25m bash -c "cpu_tests $CORE_RANGE"
53 changes: 26 additions & 27 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -313,71 +313,70 @@ steps:

##### models test #####

- label: Basic Models Test # 10min
- label: Basic Models Test # 30min
source_file_dependencies:
- vllm/
- tests/models
commands:
- pip install -e ./plugins/vllm_add_dummy_model
- pytest -v -s models/test_oot_registration.py # it needs a clean process
- pytest -v -s models/*.py --ignore=models/test_oot_registration.py
- pytest -v -s models/test_registry.py
- pytest -v -s models/test_initialization.py

- label: Decoder-only Language Models Test (Standard) # 18min
- label: Language Models Test (Standard) # 42min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
commands:
- pytest -v -s models/decoder_only/language -m core_model
- pytest -v -s models/decoder_only/language -m quant_model
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
- pytest -v -s models/embedding/language -m core_model
- pytest -v -s models/embedding/vision_language -m core_model

- label: Decoder-only Language Models Test (Extended) # 46min
- label: Language Models Test (Extended) # 50min
nightly: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/language
- tests/models/embedding/language
- tests/models/encoder_decoder/language
commands:
- pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model'
- pytest -v -s models/embedding/language -m 'not core_model'
- pytest -v -s models/embedding/vision_language -m 'not core_model'

- label: Decoder-only Multi-Modal Models Test (Standard) # 22min
- label: Multi-Modal Models Test (Standard) # 26min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/vision_language
commands:
- pytest -v -s models/decoder_only/audio_language -m core_model
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m core_model
# No tests under this group for now
# - pytest -v -s models/decoder_only/audio_language -m quant_model
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m quant_model
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
- pytest -v -s models/encoder_decoder/language -m core_model
- pytest -v -s models/encoder_decoder/vision_language -m core_model

- label: Decoder-only Multi-Modal Models Test (Extended) # 1h10m
- label: Multi-Modal Models Test (Extended) # 1h15m
nightly: true
source_file_dependencies:
- vllm/
- tests/models/decoder_only/audio_language
- tests/models/decoder_only/vision_language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/vision_language
commands:
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
# HACK - run phi3v tests separately to sidestep this transformers bug
# https://github.com/huggingface/transformers/issues/34307
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'

- label: Other Models Test # 20min
#mirror_hardwares: [amd]
source_file_dependencies:
- vllm/
- tests/models/embedding/language
- tests/models/embedding/vision_language
- tests/models/encoder_decoder/language
- tests/models/encoder_decoder/vision_language
commands:
- pytest -v -s models/embedding/language
- pytest -v -s models/embedding/vision_language
- pytest -v -s models/encoder_decoder/language
- pytest -v -s models/encoder_decoder/vision_language
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'

# This test is used only in PR development phase to test individual models and should never run on main
- label: Custom Models Test
Expand Down
38 changes: 38 additions & 0 deletions .buildkite/upload-wheels.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
#!/usr/bin/env bash

set -ex

# Assume wheels are in artifacts/dist/*.whl
wheel_files=(artifacts/dist/*.whl)

# Check that exactly one wheel is found
if [[ ${#wheel_files[@]} -ne 1 ]]; then
echo "Error: Expected exactly one wheel file in artifacts/dist/, but found ${#wheel_files[@]}"
exit 1
fi

# Get the single wheel file
wheel="${wheel_files[0]}"

# Rename 'linux' to 'manylinux1' in the wheel filename
new_wheel="${wheel/linux/manylinux1}"
mv -- "$wheel" "$new_wheel"
wheel="$new_wheel"

# Extract the version from the wheel
version=$(unzip -p "$wheel" '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
echo "Version: $version"

# If the version contains "dev", rename it to v1.0.0.dev for consistency
if [[ $version == *dev* ]]; then
new_version="1.0.0.dev"
new_wheel="${wheel/$version/$new_version}"
mv -- "$wheel" "$new_wheel"
wheel="$new_wheel"
version="$new_version"
fi

# Upload the wheel to S3
aws s3 cp "$wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
aws s3 cp "$wheel" "s3://vllm-wheels/nightly/"
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
71 changes: 1 addition & 70 deletions .github/PULL_REQUEST_TEMPLATE.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,73 +2,4 @@ FILL IN THE PR DESCRIPTION HERE

FIX #xxxx (*link existing issues this PR will resolve*)

**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**

---

<details>
<!-- inside this <details> section, markdown rendering does not work, so we use raw html here. -->
<summary><b> PR Checklist (Click to Expand) </b></summary>

<p>Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.</p>

<h3>PR Title and Classification</h3>
<p>Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:</p>
<ul>
<li><code>[Bugfix]</code> for bug fixes.</li>
<li><code>[CI/Build]</code> for build or continuous integration improvements.</li>
<li><code>[Doc]</code> for documentation fixes and improvements.</li>
<li><code>[Model]</code> for adding a new model or improving an existing model. Model name should appear in the title.</li>
<li><code>[Frontend]</code> For changes on the vLLM frontend (e.g., OpenAI API server, <code>LLM</code> class, etc.) </li>
<li><code>[Kernel]</code> for changes affecting CUDA kernels or other compute kernels.</li>
<li><code>[Core]</code> for changes in the core vLLM logic (e.g., <code>LLMEngine</code>, <code>AsyncLLMEngine</code>, <code>Scheduler</code>, etc.)</li>
<li><code>[Hardware][Vendor]</code> for hardware-specific changes. Vendor name should appear in the prefix (e.g., <code>[Hardware][AMD]</code>).</li>
<li><code>[Misc]</code> for PRs that do not fit the above categories. Please use this sparingly.</li>
</ul>
<p><strong>Note:</strong> If the PR spans more than one category, please include all relevant prefixes.</p>

<h3>Code Quality</h3>

<p>The PR need to meet the following code quality standards:</p>

<ul>
<li>We adhere to <a href="https://google.github.io/styleguide/pyguide.html">Google Python style guide</a> and <a href="https://google.github.io/styleguide/cppguide.html">Google C++ style guide</a>.</li>
<li>Pass all linter checks. Please use <a href="https://github.com/vllm-project/vllm/blob/main/format.sh"><code>format.sh</code></a> to format your code.</li>
<li>The code need to be well-documented to ensure future contributors can easily understand the code.</li>
<li>Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.</li>
<li>Please add documentation to <code>docs/source/</code> if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.</li>
</ul>

<h3>Adding or changing kernels</h3>
<p>Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.</p>
<ul>
<li>Make sure custom ops are registered following PyTorch guidelines: <a href="https://pytorch.org/tutorials/advanced/cpp_custom_ops.html#cpp-custom-ops-tutorial">Custom C++ and CUDA Operators</a> and <a href="https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU">The Custom Operators Manual</a></li>
<li>Custom operations that return <code>Tensors</code> require meta-functions. Meta-functions should be implemented and registered in python so that dynamic dims can be handled automatically. See above documents for a description of meta-functions.</li>
<li>Use <a href="https://pytorch.org/docs/stable/library.html#torch.library.opcheck"><code>torch.libary.opcheck()</code></a> to test the function registration and meta-function for any registered ops. See <code>tests/kernels</code> for examples.</li>
<li>When changing the C++ signature of an existing op, the schema must be updated to reflect the changes.</li>
<li>If a new custom type is needed, see the following document: <a href="https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA">Custom Class Support in PT2</a>.
</ul>

<h3>Notes for Large Changes</h3>
<p>Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with <code>rfc-required</code> and might not go through the PR.</p>

<h3>What to Expect for the Reviews</h3>

<p>The goal of the vLLM team is to be a <i>transparent reviewing machine</i>. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process: </p>

<ul>
<li> After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.</li>
<li> After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.</li>
<li> After the review, the reviewer will put an <code> action-required</code> label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.</li>
<li> Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.
</li>
</ul>

<h3>Thank You</h3>

<p> Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone! </p>


</details>


**BEFORE SUBMITTING, PLEASE READ https://docs.vllm.ai/en/latest/contributing/overview.html **
25 changes: 21 additions & 4 deletions .github/scripts/cleanup_pr_body.sh
Original file line number Diff line number Diff line change
Expand Up @@ -15,19 +15,36 @@ NEW=/tmp/new_pr_body.txt
gh pr view --json body --template "{{.body}}" "${PR_NUMBER}" > "${OLD}"
cp "${OLD}" "${NEW}"

# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE\*\*/,$d' "${NEW}"

# Remove "FIX #xxxx (*link existing issues this PR will resolve*)"
sed -i '/FIX #xxxx.*$/d' "${NEW}"

# Remove "FILL IN THE PR DESCRIPTION HERE"
sed -i '/FILL IN THE PR DESCRIPTION HERE/d' "${NEW}"

# Remove all lines after and including "**BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE**"
sed -i '/\*\*BEFORE SUBMITTING, PLEASE READ.*\*\*/,$d' "${NEW}"

# Remove HTML <details> section that includes <summary> text of "PR Checklist (Click to Expand)"
python3 - <<EOF
import re
with open("${NEW}", "r") as file:
content = file.read()
pattern = re.compile(r'(---\n\n)?<details>.*?<summary>.*?PR Checklist \(Click to Expand\).*?</summary>.*?</details>', re.DOTALL)
content = re.sub(pattern, '', content)
with open("${NEW}", "w") as file:
file.write(content)
EOF

# Run this only if ${NEW} is different than ${OLD}
if ! cmp -s "${OLD}" "${NEW}"; then
echo "Updating PR body"
gh pr edit --body-file "${NEW}" "${PR_NUMBER}"
echo
echo "Updated PR body:"
echo
cat "${NEW}"
else
echo "No changes needed"
fi
Loading

0 comments on commit efa4705

Please sign in to comment.