Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/get costs from optimization #1052

Open
wants to merge 18 commits into
base: dev
Choose a base branch
from
219 changes: 219 additions & 0 deletions examples/get_costs_example/get_costs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,219 @@
# -*- coding: utf-8 -*-
r"""
General description
-------------------
Example that shows how to use of the processing methods get_set_costs_from_lpfile, time_dependent_values_as_dataframe and time_independent_values_as_dataframe.

The methods are combined to get the actual caused costs per timestep and the caused scalar costs e.g. invest-costs

The energysystem is copied from the exampel generic_invest_limit

There are two supply chains. The energy systems looks like that:

.. code-block:: text

bus_a_0 bus_a_1
| |
source_a_0 --->|---> trafo_a --->|--->demand_a
|
source_a_1--->|
|

bus_b_0 bus_b_1
| |
source_b_0 --->|---> trafo_b --->|--->demand_b
|
source_b_1--->|
|

Everything is identical - the costs for the sources, the demand, the efficiency
of the Converter. And both Converter have an investment at the output.
The source '\*_1' is in both cases very expensive, so that
a investment is probably done in the converter.
Now, both investments share a third resource, which is called "space" in this
example. (This could be anything, and you could use as many additional
resources as you want.) And this resource is limited. In this case, every
converter capacity unit, which might be installed, needs 2 space for
'trafo a', and 1 space per installed capacity for 'trafo b'.
And the total space is limited to 24.
See what happens, have fun ;)

Code
----
Download source code: :download:`example_generic_invest.py </../examples/generic_invest_limit/example_generic_invest.py>`

.. dropdown:: Click to display code

.. literalinclude:: /../examples/generic_invest_limit/example_generic_invest.py
:language: python
:lines: 62-

Installation requirements
-------------------------
This example requires oemof.solph (v0.5.x), install by:

.. code:: bash

pip install oemof.solph[examples]

License
-------
Johannes Röder <[email protected]>

`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_
"""

import logging
import os

from oemof import solph
from oemof.solph import _experimental_processing as exppro


def main():
data = [0, 15, 30, 35, 20, 25, 27, 10, 5, 2, 15, 40, 20, 0, 0]

# create an energy system
idx = solph.create_time_index(2020, number=len(data))
es = solph.EnergySystem(timeindex=idx, infer_last_interval=False)

# Parameter: costs for the sources
c_0 = 10
c_1 = 100

epc_invest = 500

# commodity a
bus_a_0 = solph.Bus(label="bus_a_0")
bus_a_1 = solph.Bus(label="bus_a_1")
es.add(bus_a_0, bus_a_1)

es.add(
solph.components.Source(
label="source_a_0",
outputs={bus_a_0: solph.Flow(variable_costs=c_0)},
)
)

es.add(
solph.components.Source(
label="source_a_1",
outputs={bus_a_1: solph.Flow(variable_costs=c_1)},
)
)

es.add(
solph.components.Sink(
label="demand_a",
inputs={bus_a_1: solph.Flow(fix=data, nominal_value=1)},
)
)

# commodity b
bus_b_0 = solph.Bus(label="bus_b_0")
bus_b_1 = solph.Bus(label="bus_b_1")
es.add(bus_b_0, bus_b_1)
es.add(
solph.components.Source(
label="source_b_0",
outputs={bus_b_0: solph.Flow(variable_costs=data)},
)
)

es.add(
solph.components.Source(
label="source_b_1",
outputs={bus_b_1: solph.Flow(variable_costs=c_1)},
)
)

es.add(
solph.components.Sink(
label="demand_b",
inputs={bus_b_1: solph.Flow(fix=data, nominal_value=1)},
)
)

# Converter a
es.add(
solph.components.Converter(
label="trafo_a",
inputs={bus_a_0: solph.Flow()},
outputs={
bus_a_1: solph.Flow(
nominal_value=solph.Investment(
ep_costs=epc_invest, custom_attributes={"space": 2}
)
)
},
conversion_factors={bus_a_1: 0.8},
)
)

# Converter b
es.add(
solph.components.Converter(
label="trafo_b",
inputs={bus_b_0: solph.Flow()},
outputs={
bus_b_1: solph.Flow(
nominal_value=solph.Investment(
ep_costs=epc_invest, custom_attributes={"space": 1}
)
)
},
conversion_factors={bus_a_1: 0.8},
)
)

# create an optimization problem and solve it
om = solph.Model(es)

# add constraint for generic investment limit
om = solph.constraints.additional_investment_flow_limit(
om, "space", limit=24
)

# export lp file
filename = os.path.join(
solph.helpers.extend_basic_path("lp_files"), "GenericInvest.lp"
)
logging.info("Store lp-file in {0}.".format(filename))
om.write(filename, io_options={"symbolic_solver_labels": True})

# solve model
om.solve(solver="cbc", solve_kwargs={"tee": True})

# to get the set costs use the method get_set_costs_from_lpfile

set_tdc, set_tic = exppro.get_set_costs_from_lpfile(filename, om)

# create result object. The last timestep has to be removed
results = solph.processing.results(om, remove_last_time_point=True)

# now get the timedependent optimized values as dataframe

dataframe_tdv = exppro.time_dependent_values_as_dataframe(results)

# now get the timeindependent optimized values as dataframe
dataframe_tiv = exppro.time_independent_values_as_dataframe(results)

# filter values with costs

td_intersect = set_tdc.columns.intersection(dataframe_tdv.columns)
ti_intersect = set_tic.columns.intersection(dataframe_tiv.columns)

# calculate costs
time_dependent_costs = dataframe_tdv[td_intersect] * set_tdc[td_intersect]

time_independent_costs = (
dataframe_tiv[ti_intersect] * set_tic[ti_intersect]
)

print(time_dependent_costs)

print(time_independent_costs)


if __name__ == "__main__":
main()
Loading
Loading