Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: check object detection with YOLO v4 CoreML model. #364

Merged
merged 4 commits into from
Dec 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 0 additions & 11 deletions python/oddkiva/sara/sfm/robust_global_translations.py

This file was deleted.

179 changes: 179 additions & 0 deletions python/oddkiva/shakti/inference/coreml/examples/run_yolov4_tiny.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
from collections import namedtuple
from pathlib import Path
from typing import Any

from PIL import Image

import numpy as np

import coremltools as ct

import oddkiva.sara as sara
import oddkiva.shakti.inference.darknet as darknet


THIS_FILE = __file__
SARA_SOURCE_DIR_PATH = Path(THIS_FILE[:THIS_FILE.find('sara') + len('sara')])
SARA_DATA_DIR_PATH = SARA_SOURCE_DIR_PATH / 'data'
SARA_TRAINED_MODEL_DIR_PATH = SARA_SOURCE_DIR_PATH / 'trained_models'
SARA_YOLOV4_MODEL_DIR_PATH = SARA_TRAINED_MODEL_DIR_PATH / 'yolov4-tiny'

YOLO_V4_COREML_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'yolov4-tiny.mlpackage'
YOLO_V4_COCO_CLASSES_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'classes.txt'
assert YOLO_V4_COREML_PATH.exists()
YOLO_V4_CFG_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'yolov4-tiny.cfg'
assert YOLO_V4_CFG_PATH.exists()

DOG_IMAGE_PATH = SARA_DATA_DIR_PATH / 'dog.jpg'
assert DOG_IMAGE_PATH.exists()


Box = namedtuple('Box', ['x', 'y', 'w', 'h', 'p_object', 'class_id', 'p_class'])


def get_yolo_boxes(yolo_out: np.ndarray, yolo_layers: dict['str': Any],
objectness_thres,
image_ori_sizes, yolo_input_sizes):
mask = yolo_layers['mask']
anchors = yolo_layers['anchors']
_, B, _, H, W = yolo_out.shape

out = yolo_out
rel_x = out[:, :, 0]
rel_y = out[:, :, 1]
log_w = out[:, :, 2]
log_h = out[:, :, 3]
p_objectness = out[:, :, 4]
p_classes = out[:, :, 5:]

yi, xi = np.meshgrid(range(H), range(W), indexing='ij')

w_prior = [anchors[mask[b]][0] for b in range(B)]
h_prior = [anchors[mask[b]][1] for b in range(B)]

sx = image_ori_sizes[1] / yolo_input_sizes[1]
sy = image_ori_sizes[0] / yolo_input_sizes[0]

x = (rel_x + xi) / W * image_ori_sizes[1]
y = (rel_y + yi) / H * image_ori_sizes[0]
w = np.copy(log_w)
h = np.copy(log_h)
for b in range(B):
w[:, b] = np.exp(log_w)[:, b] * w_prior[b] * sx
h[:, b] = np.exp(log_h)[:, b] * h_prior[b] * sy

p_class_idx = np.argmax(p_classes, axis=2)

# Get the 4D indices
object_ids = np.nonzero(p_objectness > objectness_thres)
x = x[object_ids]
y = y[object_ids]
w = w[object_ids]
h = h[object_ids]
x -= 0.5 * w
y -= 0.5 * h
p_objectness = p_objectness[object_ids]
class_ids = p_class_idx[object_ids]
ixs = (object_ids[0], object_ids[1], class_ids, object_ids[2],
object_ids[3])
p_classes = p_classes[ixs]

boxes = np.stack((x, y, w, h, p_objectness, class_ids,
p_classes)).transpose().tolist()
boxes = [Box(*b) for b in boxes]
return boxes

def nms(boxes: list[Box], iou_thres=0.4):
def compare(x: Box, y: Box):
return y.p_object - x.p_object
from functools import cmp_to_key
boxes_sorted = sorted(boxes, key=cmp_to_key(compare))

boxes_filtered = []
for box in boxes_sorted:
if not boxes_filtered:
boxes_filtered.append(box)
continue
x1 = np.array([box.x for box in boxes_filtered])
y1 = np.array([box.y for box in boxes_filtered])
w = np.array([box.w for box in boxes_filtered])
h = np.array([box.h for box in boxes_filtered])
x2 = x1 + w
y2 = y1 + h

inter_x1 = np.maximum(x1, box.x)
inter_y1 = np.maximum(y1, box.y)
inter_x2 = np.minimum(x2, box.x + box.w)
inter_y2 = np.minimum(y2, box.y + box.h)

inter = np.logical_and(inter_x1 <= inter_x2, inter_y1 <= inter_y2)
inter_area = \
(inter_x2 - inter_x1) * (inter_y2 - inter_y1) * \
inter.astype(np.float32)

union_area = w * h + box.w * box.h - inter_area

iou = inter_area / union_area

overlap = np.any(iou > iou_thres)
if not overlap:
boxes_filtered.append(box)

return boxes_filtered


def detect(yolo_model, yolo_layers, image_ori, yolo_input_sizes):
image_ori_sizes = np.asarray(image_ori).shape[:2]
image_resized = image_ori.resize(yolo_input_sizes,
resample=Image.Resampling.LANCZOS)

yolo_outs = yolo_model.predict({'image': image_resized})
yolo_outs = [yolo_outs[f'yolo_{i}'] for i in range(len(yolo_layers))]

yolo_boxes = [get_yolo_boxes(yolo_outs[i], yolo_layers[i], 0.4,
image_ori_sizes, yolo_input_sizes)
for i in range(len(yolo_layers))]
yolo_boxes = sum(yolo_boxes, [])

yolo_boxes = nms(yolo_boxes)

return yolo_boxes


def draw_detection(
b: Box,
class_name: str,
color: tuple[int, int, int],
font_size: int = 20
) -> None:

sara.draw_rect((b.x, b.y), (b.w, b.h), (255, 0, 0), 3)
sara.draw_text((b.x, b.y - 4), class_name, color, font_size, 0, False, True, False)

def user_main():
yolo_model = ct.models.CompiledMLModel(str(YOLO_V4_COREML_PATH))
yolo_cfg = darknet.Config()
yolo_cfg.read(YOLO_V4_CFG_PATH)
yolo_input_sizes = (yolo_cfg._metadata['width'], yolo_cfg._metadata['height'])
yolo_layers = [layer['yolo'] for layer in yolo_cfg._model
if 'yolo' in layer.keys()]
with open(YOLO_V4_COCO_CLASSES_PATH, 'r') as fp:
yolo_classes = [l.strip(' \n') for l in fp.readlines() if l]
print(yolo_classes)

image_ori = Image.open(DOG_IMAGE_PATH)

yolo_boxes = detect(yolo_model, yolo_layers, image_ori, yolo_input_sizes)

sara.create_window(*image_ori.size)
sara.set_antialiasing(True)
sara.draw_image(np.asarray(image_ori))
for b in yolo_boxes:
class_name = yolo_classes[int(b.class_id)]
draw_detection(b, class_name, (191, 0, 0))

sara.get_key()


if __name__ == '__main__':
sara.run_graphics(user_main)

This file was deleted.