-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Odd Kiva
committed
Dec 27, 2023
1 parent
5402d28
commit fdd85bb
Showing
4 changed files
with
124 additions
and
34 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
File renamed without changes.
124 changes: 124 additions & 0 deletions
124
python/oddkiva/shakti/inference/coreml/examples/run_yolov4_tiny.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
from collections import namedtuple | ||
from pathlib import Path | ||
from typing import Any | ||
|
||
from PIL import Image | ||
|
||
import numpy as np | ||
|
||
import coremltools as ct | ||
|
||
import oddkiva.shakti.inference.darknet as darknet | ||
|
||
|
||
THIS_FILE = __file__ | ||
SARA_SOURCE_DIR_PATH = Path(THIS_FILE[:THIS_FILE.find('sara') + len('sara')]) | ||
SARA_DATA_DIR_PATH = SARA_SOURCE_DIR_PATH / 'data' | ||
SARA_TRAINED_MODEL_DIR_PATH = SARA_SOURCE_DIR_PATH / 'trained_models' | ||
SARA_YOLOV4_MODEL_DIR_PATH = SARA_SOURCE_DIR_PATH / 'trained_models' | ||
|
||
YOLO_V4_COREML_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'yolo-v4.mlpackage' | ||
YOLO_V4_COCO_CLASSES_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'classes.txt' | ||
assert YOLO_V4_COREML_PATH.exists() | ||
YOLO_V4_CFG_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'yolov4.cfg' | ||
assert YOLO_V4_CFG_PATH.exists() | ||
|
||
DOG_IMAGE_PATH = SARA_DATA_DIR_PATH / 'dog.jpg' | ||
assert DOG_IMAGE_PATH.exists() | ||
|
||
|
||
Box = namedtuple('x', 'y', 'w', 'h', 'p_object', 'class_id', 'p_class') | ||
|
||
|
||
def get_yolo_boxes(yolo_out: np.ndarray, yolo_layers: dict['str': Any], | ||
objectness_thres, | ||
image_ori_sizes, yolo_input_sizes): | ||
B = len(yolo_layers['masks']) | ||
N, C, H, W = yolo_out.shape | ||
out = yolo_out.reshape((N, B, C // B, H, W)) | ||
rel_x = out[:, :, 0] | ||
rel_y = out[:, :, 1] | ||
log_w = out[:, :, 2] | ||
log_h = out[:, :, 3] | ||
p_objectness = out[:, :, 4] | ||
p_classes = out[:, :, 5:] | ||
|
||
yi, xi = np.meshgrid(range(H), range(W), indexing='ij') | ||
|
||
mask = yolo_layers['mask'] | ||
anchors = yolo_layers['anchors'] | ||
w_prior = [anchors[2 * mask[b] + 0] for b in range(B)] | ||
h_prior = [anchors[2 * mask[b] + 1] for b in range(B)] | ||
|
||
sx = yolo_input_sizes[0] / image_ori_sizes[0] | ||
sy = yolo_input_sizes[1] / image_ori_sizes[1] | ||
|
||
x = (rel_x + xi) / W * image_ori_sizes[0] | ||
y = (rel_y + yi) / H * image_ori_sizes[1] | ||
for b in range(B): | ||
w = np.exp(log_w)[:, :, b] * w_prior[b] * sx | ||
h = np.exp(log_h)[:, :, b] * h_prior[b] * sy | ||
|
||
p_class_idx = np.argmax(p_classes, axis=2) | ||
|
||
# Get the 5D indices | ||
object_ids = np.where(p_objectness > objectness_thres) | ||
x = x[object_ids] | ||
y = y[object_ids] | ||
w = w[object_ids] | ||
h = h[object_ids] | ||
p_objectness = p_objectness[object_ids] | ||
class_ids = p_class_idx[object_ids] | ||
p_classes = p_classes[object_ids] | ||
|
||
boxes = np.stack((x, y, w, h, p_objectness, class_ids, p_classes)) | ||
boxes = [Box(b) for b in boxes] | ||
return boxes | ||
|
||
def nms(boxes_ndarr: [Box], iou_thres=0.4): | ||
boxes_sorted = sorted(boxes_ndarr, | ||
cmp=def compare(x, y): x.p_object > y.p_object) | ||
boxes_filtered = [] | ||
for box in boxes_sorted: | ||
if not boxes_filtered: | ||
boxes_filtered.append(box) | ||
continue | ||
x1 = np.array([box.x for box in boxes_filtered]) | ||
y1 = np.array([box.y for box in boxes_filtered]) | ||
w = np.array([box.w for box in boxes_filtered]) | ||
h = np.array([box.h for box in boxes_filtered]) | ||
x2 = x1 + w | ||
y2 = y1 + h | ||
|
||
inter_x1 = np.maximum(x1, box.x) | ||
inter_y1 = np.maximum(y1, box.y) | ||
inter_x2 = np.minimum(x2, box.x + box.w) | ||
inter_y2 = np.minimum(y2, box.y + box.h) | ||
|
||
inter = inter_x1 <= inter_x2 and inter_y1 <= inter_y2 | ||
inter_area = \ | ||
(inter_x2 - inter_x2) * (inter_y2 - inter_y1) * \ | ||
inter.astype(np.float32) | ||
|
||
union_area = w * h + box.w * box.h - inter_area | ||
|
||
iou = inter_area / union_area | ||
|
||
ids = np.where(iou > iou_thres) | ||
if not ids: | ||
boxes_filtered.append(box) | ||
|
||
return boxes_filtered | ||
|
||
|
||
yolo_model = ct.models.CompiledMLModel(str(YOLO_V4_COREML_PATH)) | ||
yolo_cfg = darknet.Config() | ||
yolo_cfg.read(YOLO_V4_CFG_PATH) | ||
yolo_input_sizes = (yolo_cfg._metadata['width'], yolo_cfg._metadata['height']) | ||
yolo_layers = [layer['yolo'] for layer in yolo_cfg._model | ||
if 'yolo' in layer.keys()] | ||
|
||
image = Image.open(DOG_IMAGE_PATH).resize(yolo_input_sizes, | ||
resample=Image.Resampling.LANCZOS) | ||
|
||
yolo_outs = model.predict({'image': image}) |
23 changes: 0 additions & 23 deletions
23
.../oddkiva/shakti/inference/darknet/v4/examples/detect_object_with_yolov4_tiny_mlpackage.py
This file was deleted.
Oops, something went wrong.