-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
222 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
import torch.nn as nn | ||
|
||
import oddkiva.shakti.inference.yolo.darknet_config import DarknetConfig | ||
|
||
|
||
class Darknet(nn.Module): | ||
|
||
def __init__(self, darknet_config: DarknetConfig, inference:bool=False): | ||
super(Darknet, self).__init__() | ||
|
||
self.inference = inference | ||
self.training = not self.inference | ||
|
||
self.models = self.create_network(self.blocks) # merge conv, bn,leaky | ||
self.loss = self.models[len(self.models) - 1] | ||
|
||
if self.blocks[(len(self.blocks) - 1)]['type'] == 'region': | ||
self.anchors = self.loss.anchors | ||
self.num_anchors = self.loss.num_anchors | ||
self.anchor_step = self.loss.anchor_step | ||
self.num_classes = self.loss.num_classes | ||
|
||
self.header = torch.IntTensor([0, 0, 0, 0]) | ||
self.seen = 0 | ||
|
||
def print_network(self): | ||
print_cfg(self.blocks) | ||
|
||
def create_network(self, blocks): | ||
models = nn.ModuleList() | ||
|
||
prev_filters = 3 | ||
out_filters = [] | ||
prev_stride = 1 | ||
out_strides = [] | ||
conv_id = 0 | ||
for block in blocks: | ||
if block['type'] == 'net': | ||
prev_filters = int(block['channels']) | ||
continue | ||
elif block['type'] == 'convolutional': | ||
conv_id = conv_id + 1 | ||
batch_normalize = int(block['batch_normalize']) | ||
filters = int(block['filters']) | ||
kernel_size = int(block['size']) | ||
stride = int(block['stride']) | ||
is_pad = int(block['pad']) | ||
pad = (kernel_size - 1) // 2 if is_pad else 0 | ||
activation = block['activation'] | ||
model = nn.Sequential() | ||
if batch_normalize: | ||
model.add_module('conv{0}'.format(conv_id), | ||
nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias=False)) | ||
model.add_module('bn{0}'.format(conv_id), nn.BatchNorm2d(filters)) | ||
# model.add_module('bn{0}'.format(conv_id), BN2d(filters)) | ||
else: | ||
model.add_module('conv{0}'.format(conv_id), | ||
nn.Conv2d(prev_filters, filters, kernel_size, stride, pad)) | ||
if activation == 'leaky': | ||
model.add_module('leaky{0}'.format(conv_id), nn.LeakyReLU(0.1, inplace=True)) | ||
elif activation == 'relu': | ||
model.add_module('relu{0}'.format(conv_id), nn.ReLU(inplace=True)) | ||
elif activation == 'mish': | ||
model.add_module('mish{0}'.format(conv_id), Mish()) | ||
elif activation == 'linear': | ||
model.add_module('linear{0}'.format(conv_id), nn.Identity()) | ||
elif activation == 'logistic': | ||
model.add_module('sigmoid{0}'.format(conv_id), nn.Sigmoid()) | ||
else: | ||
print("No convolutional activation named {}".format(activation)) | ||
|
||
prev_filters = filters | ||
out_filters.append(prev_filters) | ||
prev_stride = stride * prev_stride | ||
out_strides.append(prev_stride) | ||
models.append(model) | ||
elif block['type'] == 'maxpool': | ||
pool_size = int(block['size']) | ||
stride = int(block['stride']) | ||
if stride == 1 and pool_size % 2: | ||
# You can use Maxpooldark instead, here is convenient to convert onnx. | ||
# Example: [maxpool] size=3 stride=1 | ||
model = nn.MaxPool2d(kernel_size=pool_size, stride=stride, padding=pool_size // 2) | ||
elif stride == pool_size: | ||
# You can use Maxpooldark instead, here is convenient to convert onnx. | ||
# Example: [maxpool] size=2 stride=2 | ||
model = nn.MaxPool2d(kernel_size=pool_size, stride=stride, padding=0) | ||
else: | ||
model = MaxPoolDark(pool_size, stride) | ||
out_filters.append(prev_filters) | ||
prev_stride = stride * prev_stride | ||
out_strides.append(prev_stride) | ||
models.append(model) | ||
elif block['type'] == 'avgpool': | ||
model = GlobalAvgPool2d() | ||
out_filters.append(prev_filters) | ||
models.append(model) | ||
elif block['type'] == 'softmax': | ||
model = nn.Softmax() | ||
out_strides.append(prev_stride) | ||
out_filters.append(prev_filters) | ||
models.append(model) | ||
elif block['type'] == 'cost': | ||
if block['_type'] == 'sse': | ||
model = nn.MSELoss(reduction='mean') | ||
elif block['_type'] == 'L1': | ||
model = nn.L1Loss(reduction='mean') | ||
elif block['_type'] == 'smooth': | ||
model = nn.SmoothL1Loss(reduction='mean') | ||
out_filters.append(1) | ||
out_strides.append(prev_stride) | ||
models.append(model) | ||
elif block['type'] == 'reorg': | ||
stride = int(block['stride']) | ||
prev_filters = stride * stride * prev_filters | ||
out_filters.append(prev_filters) | ||
prev_stride = prev_stride * stride | ||
out_strides.append(prev_stride) | ||
models.append(Reorg(stride)) | ||
elif block['type'] == 'upsample': | ||
stride = int(block['stride']) | ||
out_filters.append(prev_filters) | ||
prev_stride = prev_stride // stride | ||
out_strides.append(prev_stride) | ||
|
||
models.append(Upsample_expand(stride)) | ||
# models.append(Upsample_interpolate(stride)) | ||
|
||
elif block['type'] == 'route': | ||
layers = block['layers'].split(',') | ||
ind = len(models) | ||
layers = [int(i) if int(i) > 0 else int(i) + ind for i in layers] | ||
if len(layers) == 1: | ||
if 'groups' not in block.keys() or int(block['groups']) == 1: | ||
prev_filters = out_filters[layers[0]] | ||
prev_stride = out_strides[layers[0]] | ||
else: | ||
prev_filters = out_filters[layers[0]] // int(block['groups']) | ||
prev_stride = out_strides[layers[0]] // int(block['groups']) | ||
elif len(layers) == 2: | ||
assert (layers[0] == ind - 1 or layers[1] == ind - 1) | ||
prev_filters = out_filters[layers[0]] + out_filters[layers[1]] | ||
prev_stride = out_strides[layers[0]] | ||
elif len(layers) == 4: | ||
assert (layers[0] == ind - 1) | ||
prev_filters = out_filters[layers[0]] + out_filters[layers[1]] + out_filters[layers[2]] + \ | ||
out_filters[layers[3]] | ||
prev_stride = out_strides[layers[0]] | ||
else: | ||
print("route error!!!") | ||
|
||
out_filters.append(prev_filters) | ||
out_strides.append(prev_stride) | ||
models.append(EmptyModule()) | ||
elif block['type'] == 'shortcut': | ||
ind = len(models) | ||
prev_filters = out_filters[ind - 1] | ||
out_filters.append(prev_filters) | ||
prev_stride = out_strides[ind - 1] | ||
out_strides.append(prev_stride) | ||
models.append(EmptyModule()) | ||
elif block['type'] == 'sam': | ||
ind = len(models) | ||
prev_filters = out_filters[ind - 1] | ||
out_filters.append(prev_filters) | ||
prev_stride = out_strides[ind - 1] | ||
out_strides.append(prev_stride) | ||
models.append(EmptyModule()) | ||
elif block['type'] == 'connected': | ||
filters = int(block['output']) | ||
if block['activation'] == 'linear': | ||
model = nn.Linear(prev_filters, filters) | ||
elif block['activation'] == 'leaky': | ||
model = nn.Sequential( | ||
nn.Linear(prev_filters, filters), | ||
nn.LeakyReLU(0.1, inplace=True)) | ||
elif block['activation'] == 'relu': | ||
model = nn.Sequential( | ||
nn.Linear(prev_filters, filters), | ||
nn.ReLU(inplace=True)) | ||
prev_filters = filters | ||
out_filters.append(prev_filters) | ||
out_strides.append(prev_stride) | ||
models.append(model) | ||
elif block['type'] == 'region': | ||
loss = RegionLoss() | ||
anchors = block['anchors'].split(',') | ||
loss.anchors = [float(i) for i in anchors] | ||
loss.num_classes = int(block['classes']) | ||
loss.num_anchors = int(block['num']) | ||
loss.anchor_step = len(loss.anchors) // loss.num_anchors | ||
loss.object_scale = float(block['object_scale']) | ||
loss.noobject_scale = float(block['noobject_scale']) | ||
loss.class_scale = float(block['class_scale']) | ||
loss.coord_scale = float(block['coord_scale']) | ||
out_filters.append(prev_filters) | ||
out_strides.append(prev_stride) | ||
models.append(loss) | ||
elif block['type'] == 'yolo': | ||
yolo_layer = YoloLayer() | ||
anchors = block['anchors'].split(',') | ||
anchor_mask = block['mask'].split(',') | ||
yolo_layer.anchor_mask = [int(i) for i in anchor_mask] | ||
yolo_layer.anchors = [float(i) for i in anchors] | ||
yolo_layer.num_classes = int(block['classes']) | ||
self.num_classes = yolo_layer.num_classes | ||
yolo_layer.num_anchors = int(block['num']) | ||
yolo_layer.anchor_step = len(yolo_layer.anchors) // yolo_layer.num_anchors | ||
yolo_layer.stride = prev_stride | ||
yolo_layer.scale_x_y = float(block['scale_x_y']) | ||
# yolo_layer.object_scale = float(block['object_scale']) | ||
# yolo_layer.noobject_scale = float(block['noobject_scale']) | ||
# yolo_layer.class_scale = float(block['class_scale']) | ||
# yolo_layer.coord_scale = float(block['coord_scale']) | ||
out_filters.append(prev_filters) | ||
out_strides.append(prev_stride) | ||
models.append(yolo_layer) | ||
else: | ||
print('unknown type %s' % (block['type'])) | ||
|
||
return models |