Skip to content

Commit

Permalink
Add option for choosing rmw fill method (#112)
Browse files Browse the repository at this point in the history
* Add option for choosing rmw fill method, default to psurge2.9 - no tests added yet

* Style fix

* Add some test for rmw fill

* Styling fix

* Update name of the RMW fill method

* Add test for setting invalid rmw fill
  • Loading branch information
SorooshMani-NOAA authored Aug 22, 2024
1 parent 0ce50e6 commit bcb1948
Show file tree
Hide file tree
Showing 4 changed files with 295 additions and 94 deletions.
9 changes: 9 additions & 0 deletions stormevents/nhc/const.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,15 @@
from enum import Enum, auto

from numpy import isnan, array, argwhere
from pandas import DataFrame


class RMWFillMethod(Enum):
none = None
persistent = auto()
regression_penny_2023 = auto()


# Bias correction values for the Rmax forecast
# ref: Penny et al. (2023). https://doi.org/10.1175/WAF-D-22-0209.1
bias_lat = [
Expand Down
230 changes: 137 additions & 93 deletions stormevents/nhc/track.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,11 @@
from stormevents.nhc.atcf import get_atcf_entry
from stormevents.nhc.atcf import read_atcf
from stormevents.nhc.storms import nhc_storms
from stormevents.nhc.const import get_RMW_regression_coefs, RMW_bias_correction
from stormevents.nhc.const import (
get_RMW_regression_coefs,
RMW_bias_correction,
RMWFillMethod,
)
from stormevents.utilities import subset_time_interval


Expand All @@ -50,6 +54,7 @@ def __init__(
file_deck: ATCF_FileDeck = None,
advisories: List[ATCF_Advisory] = None,
forecast_time: datetime = None,
rmw_fill: RMWFillMethod = RMWFillMethod.regression_penny_2023,
):
"""
:param storm: storm ID, or storm name and year
Expand Down Expand Up @@ -104,6 +109,7 @@ def __init__(

self.advisories = advisories
self.file_deck = file_deck
self.rmw_fill = rmw_fill

self.__previous_configuration = self.__configuration

Expand All @@ -122,6 +128,7 @@ def from_storm_name(
file_deck: ATCF_FileDeck = None,
advisories: List[ATCF_Advisory] = None,
forecast_time: datetime = None,
rmw_fill: RMWFillMethod = RMWFillMethod.regression_penny_2023,
) -> "VortexTrack":
"""
:param name: storm name
Expand All @@ -145,6 +152,7 @@ def from_storm_name(
file_deck=file_deck,
advisories=advisories,
forecast_time=forecast_time,
rmw_fill=rmw_fill,
)

@classmethod
Expand All @@ -156,6 +164,7 @@ def from_file(
file_deck: ATCF_FileDeck = None,
advisories: List[ATCF_Advisory] = None,
forecast_time: datetime = None,
rmw_fill: RMWFillMethod = RMWFillMethod.regression_penny_2023,
) -> "VortexTrack":
"""
:param path: file path to ATCF data
Expand Down Expand Up @@ -187,6 +196,7 @@ def from_file(
file_deck=file_deck,
advisories=advisories,
forecast_time=forecast_time,
rmw_fill=rmw_fill,
)

@property
Expand Down Expand Up @@ -486,6 +496,21 @@ def filename(self, filename: PathLike):
filename = pathlib.Path(filename)
self.__filename = filename

@property
def rmw_fill(self) -> RMWFillMethod:
"""
:return: file path to read file (optional)
"""

return self.__rmw_fill

@rmw_fill.setter
def rmw_fill(self, rmw_fill: RMWFillMethod):
if rmw_fill is None or not isinstance(rmw_fill, RMWFillMethod):
rmw_fill = RMWFillMethod.none

self.__rmw_fill = rmw_fill

@property
def data(self) -> DataFrame:
"""
Expand Down Expand Up @@ -1042,7 +1067,9 @@ def unfiltered_data(self, dataframe: DataFrame):
if "OFCL" in self.advisories:
tracks = separate_tracks(dataframe)
if all(adv in tracks for adv in ["OFCL", "CARQ"]):
tracks = correct_ofcl_based_on_carq_n_hollandb(tracks)
tracks = correct_ofcl_based_on_carq_n_hollandb(
tracks, rmw_fill=self.rmw_fill
)
dataframe = combine_tracks(tracks)

if len(self.__advisories_to_remove) > 0:
Expand All @@ -1062,6 +1089,7 @@ def __configuration(self) -> Dict[str, Any]:
"file_deck": self.file_deck,
"advisories": self.advisories,
"filename": self.filename,
"rmw_fill": self.rmw_fill,
}

@staticmethod
Expand Down Expand Up @@ -1245,7 +1273,8 @@ def combine_tracks(tracks: Dict[str, Dict[str, DataFrame]]) -> DataFrame:


def correct_ofcl_based_on_carq_n_hollandb(
tracks: Dict[str, Dict[str, DataFrame]]
tracks: Dict[str, Dict[str, DataFrame]],
rmw_fill: RMWFillMethod = RMWFillMethod.regression_penny_2023,
) -> Dict[str, Dict[str, DataFrame]]:
"""
Correct official forecast using consensus track along with holland-b
Expand Down Expand Up @@ -1292,100 +1321,115 @@ def clamp(n, minn, maxn):
mslp_missing = missing.iloc[:, 1]
radp_missing = missing.iloc[:, 2]

# fill OFCL maximum wind radius based on regression method from
# Penny et al. (2023). https://doi.org/10.1175/WAF-D-22-0209.1
isotach_radii = forecast[
[
"isotach_radius_for_NEQ",
"isotach_radius_for_SEQ",
"isotach_radius_for_NWQ",
"isotach_radius_for_SWQ",
if rmw_fill == RMWFillMethod.persistent:
# fill OFCL maximum wind radius with the first entry from
# 0-hr CARQ
forecast.loc[mrd_missing, "radius_of_maximum_winds"] = carq_ref[
"radius_of_maximum_winds"
]
]
isotach_radii[isotach_radii == 0] = pandas.NA
rmw0 = carq_ref["radius_of_maximum_winds"]
fcst_hrs = (forecast.loc[mrd_missing, "forecast_hours"]).unique()
rads = numpy.array([numpy.nan]) # initializing to make sure available
rads_bias_names = [
c for c in RMW_bias_correction.columns if "isotach_radius" in c
]
for fcst_hr in fcst_hrs:
fcst_index = forecast["forecast_hours"] == fcst_hr
if fcst_hr < 12:
rmw_ = rmw0
else:
fcst_hr_bc = min(fcst_hr, 120)
vmax = forecast.loc[fcst_index, "max_sustained_wind_speed"].iloc[0]
vmax -= RMW_bias_correction["max_sustained_wind_speed"][fcst_hr_bc]
if numpy.isnan(isotach_radii.loc[fcst_index].to_numpy()).all():
# if no isotach's are found, preserve the isotach(s) if Vmax is greater
if vmax > 50:
rads = rads[0 : min(2, len(rads))]
elif vmax > 34:
rads = rads[[0]]
else:
rads = numpy.array([numpy.nan])

elif rmw_fill == RMWFillMethod.regression_penny_2023:
# fill OFCL maximum wind radius based on regression method from
# Penny et al. (2023). https://doi.org/10.1175/WAF-D-22-0209.1
isotach_radii = forecast[
[
"isotach_radius_for_NEQ",
"isotach_radius_for_SEQ",
"isotach_radius_for_NWQ",
"isotach_radius_for_SWQ",
]
]
isotach_radii[isotach_radii == 0] = pandas.NA
rmw0 = carq_ref["radius_of_maximum_winds"]
fcst_hrs = (forecast.loc[mrd_missing, "forecast_hours"]).unique()
rads = numpy.array([numpy.nan]) # initializing to make sure available
rads_bias_names = [
c for c in RMW_bias_correction.columns if "isotach_radius" in c
]
for fcst_hr in fcst_hrs:
fcst_index = forecast["forecast_hours"] == fcst_hr
if fcst_hr < 12:
rmw_ = rmw0
else:
rads = numpy.nanmean(
isotach_radii.loc[fcst_index].to_numpy(), axis=1
)
rads -= (
RMW_bias_correction[rads_bias_names[0 : rads.size]]
.loc[fcst_hr_bc]
.values
fcst_hr_bc = min(fcst_hr, 120)
vmax = forecast.loc[fcst_index, "max_sustained_wind_speed"].iloc[0]
vmax -= RMW_bias_correction["max_sustained_wind_speed"][fcst_hr_bc]
if numpy.isnan(isotach_radii.loc[fcst_index].to_numpy()).all():
# if no isotach's are found, preserve the isotach(s) if Vmax is greater
if vmax > 50:
rads = rads[0 : min(2, len(rads))]
elif vmax > 34:
rads = rads[[0]]
else:
rads = numpy.array([numpy.nan])
else:
rads = numpy.nanmean(
isotach_radii.loc[fcst_index].to_numpy(), axis=1
)
rads -= (
RMW_bias_correction[rads_bias_names[0 : rads.size]]
.loc[fcst_hr_bc]
.values
)
coefs = get_RMW_regression_coefs(fcst_hr, rads)
lat = forecast.loc[fcst_index, "latitude"].iloc[0]
lat -= RMW_bias_correction["latitude"][fcst_hr_bc]
bases = numpy.hstack(
(1.0, rmw0, rads[~numpy.isnan(rads)], vmax, lat)
)
coefs = get_RMW_regression_coefs(fcst_hr, rads)
lat = forecast.loc[fcst_index, "latitude"].iloc[0]
lat -= RMW_bias_correction["latitude"][fcst_hr_bc]
bases = numpy.hstack((1.0, rmw0, rads[~numpy.isnan(rads)], vmax, lat))
rmw_ = (bases[1:-1] ** coefs[1:-1]).prod() * numpy.exp(
(coefs[[0, -1]] * bases[[0, -1]]).sum()
) # bound RMW as per Penny et al. (2023)
forecast.loc[fcst_index, "radius_of_maximum_winds"] = clamp(
rmw_, 5.0, max(120.0, rmw0)
)
# apply 24-HR moving mean to unique datetimes
fcsthr_index = forecast["forecast_hours"].drop_duplicates().index
df_temp = forecast.loc[fcsthr_index].copy()
# make sure 60, 84, and 108 are added
fcsthrs_12hr = numpy.unique(
numpy.append(df_temp["forecast_hours"].values, [60, 84, 108])
)
rmw_12hr = numpy.interp(
fcsthrs_12hr, df_temp["forecast_hours"], df_temp["radius_of_maximum_winds"]
)
dt_12hr = pandas.to_datetime(
fcsthrs_12hr, unit="h", origin=df_temp["datetime"].iloc[0]
)
df_temp = DataFrame(
data={"forecast_hours": fcsthrs_12hr, "radius_of_maximum_winds": rmw_12hr},
index=dt_12hr,
)
rmw_rolling = df_temp.rolling(window="24.01 h", center=True, min_periods=1)[
"radius_of_maximum_winds"
].mean()
for valid_time, rmw in rmw_rolling.items():
valid_index = forecast["datetime"] == valid_time
if (
valid_index.sum() == 0
or forecast.loc[valid_index, "forecast_hours"].iloc[0] == 0
):
continue
# make sure rolling rmw is not larger than the maximum radii of the strongest isotach
# this problem usually comes from the rolling average
max_isotach_radii = isotach_radii.loc[valid_index].iloc[-1].max()
if rmw < max_isotach_radii or numpy.isnan(max_isotach_radii):
forecast.loc[valid_index, "radius_of_maximum_winds"] = rmw
# in case it does not come from rolling average just set to be Vr/Vmax ratio of max_isotach_radii
if (
forecast.loc[valid_index, "radius_of_maximum_winds"].iloc[-1]
> max_isotach_radii
):
forecast.loc[valid_index, "radius_of_maximum_winds"] = (
max_isotach_radii
* forecast.loc[valid_index, "isotach_radius"].iloc[-1]
/ forecast.loc[valid_index, "max_sustained_wind_speed"].iloc[-1]
rmw_ = (bases[1:-1] ** coefs[1:-1]).prod() * numpy.exp(
(coefs[[0, -1]] * bases[[0, -1]]).sum()
) # bound RMW as per Penny et al. (2023)
forecast.loc[fcst_index, "radius_of_maximum_winds"] = clamp(
rmw_, 5.0, max(120.0, rmw0)
)
# apply 24-HR moving mean to unique datetimes
fcsthr_index = forecast["forecast_hours"].drop_duplicates().index
df_temp = forecast.loc[fcsthr_index].copy()
# make sure 60, 84, and 108 are added
fcsthrs_12hr = numpy.unique(
numpy.append(df_temp["forecast_hours"].values, [60, 84, 108])
)
rmw_12hr = numpy.interp(
fcsthrs_12hr,
df_temp["forecast_hours"],
df_temp["radius_of_maximum_winds"],
)
dt_12hr = pandas.to_datetime(
fcsthrs_12hr, unit="h", origin=df_temp["datetime"].iloc[0]
)
df_temp = DataFrame(
data={
"forecast_hours": fcsthrs_12hr,
"radius_of_maximum_winds": rmw_12hr,
},
index=dt_12hr,
)
rmw_rolling = df_temp.rolling(window="24.01 h", center=True, min_periods=1)[
"radius_of_maximum_winds"
].mean()
for valid_time, rmw in rmw_rolling.items():
valid_index = forecast["datetime"] == valid_time
if (
valid_index.sum() == 0
or forecast.loc[valid_index, "forecast_hours"].iloc[0] == 0
):
continue
# make sure rolling rmw is not larger than the maximum radii of the strongest isotach
# this problem usually comes from the rolling average
max_isotach_radii = isotach_radii.loc[valid_index].iloc[-1].max()
if rmw < max_isotach_radii or numpy.isnan(max_isotach_radii):
forecast.loc[valid_index, "radius_of_maximum_winds"] = rmw
# in case it does not come from rolling average just set to be Vr/Vmax ratio of max_isotach_radii
if (
forecast.loc[valid_index, "radius_of_maximum_winds"].iloc[-1]
> max_isotach_radii
):
forecast.loc[valid_index, "radius_of_maximum_winds"] = (
max_isotach_radii
* forecast.loc[valid_index, "isotach_radius"].iloc[-1]
/ forecast.loc[valid_index, "max_sustained_wind_speed"].iloc[-1]
)

# fill OFCL background pressure with the first entry from 0-hr CARQ background pressure (at sea level)
forecast.loc[radp_missing, "background_pressure"] = carq_ref[
Expand Down
3 changes: 3 additions & 0 deletions stormevents/stormevent.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
from stormevents.nhc import VortexTrack
from stormevents.nhc.atcf import ATCF_Advisory
from stormevents.nhc.atcf import ATCF_FileDeck
from stormevents.nhc.const import RMWFillMethod
from stormevents.usgs import usgs_flood_storms
from stormevents.usgs import USGS_StormEvent
from stormevents.utilities import relative_to_time_interval
Expand Down Expand Up @@ -279,6 +280,7 @@ def track(
advisories: List[ATCF_Advisory] = None,
filename: PathLike = None,
forecast_time: datetime = None,
rmw_fill: RMWFillMethod = RMWFillMethod.regression_penny_2023,
) -> VortexTrack:
"""
retrieve NHC ATCF track data
Expand Down Expand Up @@ -311,6 +313,7 @@ def track(
file_deck=file_deck,
advisories=advisories,
forecast_time=forecast_time,
rmw_fill=rmw_fill,
)
return track

Expand Down
Loading

0 comments on commit bcb1948

Please sign in to comment.