forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Feat: add
se_atten_v2
to PyTorch and DP (deepmodeling#3840)
Solve deepmodeling#3831 and deepmodeling#3139 - add `se_atten_v2` to PyTorch and DP - add document equation for `se_attn_v2` <!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **New Features** - Introduced a new descriptor class with enhanced configuration options and methods for serialization and deserialization. - Added new configurable parameters to the descriptor setup for improved flexibility. - **Documentation** - Updated function documentation to reflect new arguments and usage instructions. - **Bug Fixes** - Refined serialization logic to handle new parameters and class types more accurately. - Improved error messages for better clarity during serialization processes. <!-- end of auto-generated comment: release notes by coderabbit.ai --> --------- Signed-off-by: Chenqqian Zhang <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Duo <[email protected]>
- Loading branch information
1 parent
b780108
commit c71ece3
Showing
10 changed files
with
1,021 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
from typing import ( | ||
Any, | ||
List, | ||
Optional, | ||
Tuple, | ||
Union, | ||
) | ||
|
||
import numpy as np | ||
|
||
from deepmd.dpmodel import ( | ||
DEFAULT_PRECISION, | ||
PRECISION_DICT, | ||
) | ||
from deepmd.dpmodel.utils import ( | ||
NetworkCollection, | ||
) | ||
from deepmd.dpmodel.utils.type_embed import ( | ||
TypeEmbedNet, | ||
) | ||
from deepmd.utils.version import ( | ||
check_version_compatibility, | ||
) | ||
|
||
from .base_descriptor import ( | ||
BaseDescriptor, | ||
) | ||
from .dpa1 import ( | ||
DescrptDPA1, | ||
NeighborGatedAttention, | ||
) | ||
|
||
|
||
@BaseDescriptor.register("se_atten_v2") | ||
class DescrptSeAttenV2(DescrptDPA1): | ||
def __init__( | ||
self, | ||
rcut: float, | ||
rcut_smth: float, | ||
sel: Union[List[int], int], | ||
ntypes: int, | ||
neuron: List[int] = [25, 50, 100], | ||
axis_neuron: int = 8, | ||
tebd_dim: int = 8, | ||
resnet_dt: bool = False, | ||
trainable: bool = True, | ||
type_one_side: bool = False, | ||
attn: int = 128, | ||
attn_layer: int = 2, | ||
attn_dotr: bool = True, | ||
attn_mask: bool = False, | ||
exclude_types: List[Tuple[int, int]] = [], | ||
env_protection: float = 0.0, | ||
set_davg_zero: bool = False, | ||
activation_function: str = "tanh", | ||
precision: str = DEFAULT_PRECISION, | ||
scaling_factor=1.0, | ||
normalize: bool = True, | ||
temperature: Optional[float] = None, | ||
trainable_ln: bool = True, | ||
ln_eps: Optional[float] = 1e-5, | ||
concat_output_tebd: bool = True, | ||
spin: Optional[Any] = None, | ||
stripped_type_embedding: Optional[bool] = None, | ||
use_econf_tebd: bool = False, | ||
type_map: Optional[List[str]] = None, | ||
# consistent with argcheck, not used though | ||
seed: Optional[int] = None, | ||
) -> None: | ||
DescrptDPA1.__init__( | ||
self, | ||
rcut, | ||
rcut_smth, | ||
sel, | ||
ntypes, | ||
neuron=neuron, | ||
axis_neuron=axis_neuron, | ||
tebd_dim=tebd_dim, | ||
tebd_input_mode="strip", | ||
resnet_dt=resnet_dt, | ||
trainable=trainable, | ||
type_one_side=type_one_side, | ||
attn=attn, | ||
attn_layer=attn_layer, | ||
attn_dotr=attn_dotr, | ||
attn_mask=attn_mask, | ||
exclude_types=exclude_types, | ||
env_protection=env_protection, | ||
set_davg_zero=set_davg_zero, | ||
activation_function=activation_function, | ||
precision=precision, | ||
scaling_factor=scaling_factor, | ||
normalize=normalize, | ||
temperature=temperature, | ||
trainable_ln=trainable_ln, | ||
ln_eps=ln_eps, | ||
smooth_type_embedding=True, | ||
concat_output_tebd=concat_output_tebd, | ||
spin=spin, | ||
stripped_type_embedding=stripped_type_embedding, | ||
use_econf_tebd=use_econf_tebd, | ||
type_map=type_map, | ||
# consistent with argcheck, not used though | ||
seed=seed, | ||
) | ||
|
||
def serialize(self) -> dict: | ||
"""Serialize the descriptor to dict.""" | ||
obj = self.se_atten | ||
data = { | ||
"@class": "Descriptor", | ||
"type": "se_atten_v2", | ||
"@version": 1, | ||
"rcut": obj.rcut, | ||
"rcut_smth": obj.rcut_smth, | ||
"sel": obj.sel, | ||
"ntypes": obj.ntypes, | ||
"neuron": obj.neuron, | ||
"axis_neuron": obj.axis_neuron, | ||
"tebd_dim": obj.tebd_dim, | ||
"set_davg_zero": obj.set_davg_zero, | ||
"attn": obj.attn, | ||
"attn_layer": obj.attn_layer, | ||
"attn_dotr": obj.attn_dotr, | ||
"attn_mask": False, | ||
"activation_function": obj.activation_function, | ||
"resnet_dt": obj.resnet_dt, | ||
"scaling_factor": obj.scaling_factor, | ||
"normalize": obj.normalize, | ||
"temperature": obj.temperature, | ||
"trainable_ln": obj.trainable_ln, | ||
"ln_eps": obj.ln_eps, | ||
"type_one_side": obj.type_one_side, | ||
"concat_output_tebd": self.concat_output_tebd, | ||
"use_econf_tebd": self.use_econf_tebd, | ||
"type_map": self.type_map, | ||
# make deterministic | ||
"precision": np.dtype(PRECISION_DICT[obj.precision]).name, | ||
"embeddings": obj.embeddings.serialize(), | ||
"embeddings_strip": obj.embeddings_strip.serialize(), | ||
"attention_layers": obj.dpa1_attention.serialize(), | ||
"env_mat": obj.env_mat.serialize(), | ||
"type_embedding": self.type_embedding.serialize(), | ||
"exclude_types": obj.exclude_types, | ||
"env_protection": obj.env_protection, | ||
"@variables": { | ||
"davg": obj["davg"], | ||
"dstd": obj["dstd"], | ||
}, | ||
## to be updated when the options are supported. | ||
"trainable": self.trainable, | ||
"spin": None, | ||
} | ||
return data | ||
|
||
@classmethod | ||
def deserialize(cls, data: dict) -> "DescrptSeAttenV2": | ||
"""Deserialize from dict.""" | ||
data = data.copy() | ||
check_version_compatibility(data.pop("@version"), 1, 1) | ||
data.pop("@class") | ||
data.pop("type") | ||
variables = data.pop("@variables") | ||
embeddings = data.pop("embeddings") | ||
type_embedding = data.pop("type_embedding") | ||
attention_layers = data.pop("attention_layers") | ||
data.pop("env_mat") | ||
embeddings_strip = data.pop("embeddings_strip") | ||
obj = cls(**data) | ||
|
||
obj.se_atten["davg"] = variables["davg"] | ||
obj.se_atten["dstd"] = variables["dstd"] | ||
obj.se_atten.embeddings = NetworkCollection.deserialize(embeddings) | ||
obj.se_atten.embeddings_strip = NetworkCollection.deserialize(embeddings_strip) | ||
obj.type_embedding = TypeEmbedNet.deserialize(type_embedding) | ||
obj.se_atten.dpa1_attention = NeighborGatedAttention.deserialize( | ||
attention_layers | ||
) | ||
return obj |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.