Skip to content

Commit

Permalink
Feat: Refactor dipole fitting pytorch (deepmodeling#3281)
Browse files Browse the repository at this point in the history
This PR is to provide implementation of equivariant diplole fitting in
pytorch and backend-independent numpy.

---------

Signed-off-by: Anyang Peng <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
anyangml and pre-commit-ci[bot] authored Feb 18, 2024
1 parent db6c666 commit 6451cdb
Show file tree
Hide file tree
Showing 8 changed files with 1,041 additions and 309 deletions.
4 changes: 4 additions & 0 deletions deepmd/dpmodel/fitting/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from .dipole_fitting import (
DipoleFitting,
)
from .invar_fitting import (
InvarFitting,
)
Expand All @@ -9,4 +12,5 @@
__all__ = [
"InvarFitting",
"make_base_fitting",
"DipoleFitting",
]
199 changes: 199 additions & 0 deletions deepmd/dpmodel/fitting/dipole_fitting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from typing import (
Any,
Dict,
List,
Optional,
)

import numpy as np

from deepmd.dpmodel import (
DEFAULT_PRECISION,
)
from deepmd.dpmodel.output_def import (
FittingOutputDef,
OutputVariableDef,
fitting_check_output,
)

from .general_fitting import (
GeneralFitting,
)


@fitting_check_output
class DipoleFitting(GeneralFitting):
r"""Fitting rotationally invariant diploe of the system.
Parameters
----------
var_name
The name of the output variable.
ntypes
The number of atom types.
dim_descrpt
The dimension of the input descriptor.
dim_rot_mat : int
The dimension of rotation matrix, m1.
neuron
Number of neurons :math:`N` in each hidden layer of the fitting net
resnet_dt
Time-step `dt` in the resnet construction:
:math:`y = x + dt * \phi (Wx + b)`
numb_fparam
Number of frame parameter
numb_aparam
Number of atomic parameter
rcond
The condition number for the regression of atomic energy.
tot_ener_zero
Force the total energy to zero. Useful for the charge fitting.
trainable
If the weights of fitting net are trainable.
Suppose that we have :math:`N_l` hidden layers in the fitting net,
this list is of length :math:`N_l + 1`, specifying if the hidden layers and the output layer are trainable.
atom_ener
Specifying atomic energy contribution in vacuum. The `set_davg_zero` key in the descrptor should be set.
activation_function
The activation function :math:`\boldsymbol{\phi}` in the embedding net. Supported options are |ACTIVATION_FN|
precision
The precision of the embedding net parameters. Supported options are |PRECISION|
layer_name : list[Optional[str]], optional
The name of the each layer. If two layers, either in the same fitting or different fittings,
have the same name, they will share the same neural network parameters.
use_aparam_as_mask: bool, optional
If True, the atomic parameters will be used as a mask that determines the atom is real/virtual.
And the aparam will not be used as the atomic parameters for embedding.
distinguish_types
Different atomic types uses different fitting net.
"""

def __init__(
self,
var_name: str,
ntypes: int,
dim_descrpt: int,
dim_rot_mat: int,
neuron: List[int] = [120, 120, 120],
resnet_dt: bool = True,
numb_fparam: int = 0,
numb_aparam: int = 0,
rcond: Optional[float] = None,
tot_ener_zero: bool = False,
trainable: Optional[List[bool]] = None,
atom_ener: Optional[List[Optional[float]]] = None,
activation_function: str = "tanh",
precision: str = DEFAULT_PRECISION,
layer_name: Optional[List[Optional[str]]] = None,
use_aparam_as_mask: bool = False,
spin: Any = None,
distinguish_types: bool = False,
exclude_types: List[int] = [],
old_impl=False,
):
# seed, uniform_seed are not included
if tot_ener_zero:
raise NotImplementedError("tot_ener_zero is not implemented")
if spin is not None:
raise NotImplementedError("spin is not implemented")
if use_aparam_as_mask:
raise NotImplementedError("use_aparam_as_mask is not implemented")
if layer_name is not None:
raise NotImplementedError("layer_name is not implemented")
if atom_ener is not None:
raise NotImplementedError("atom_ener is not implemented")

self.dim_rot_mat = dim_rot_mat
super().__init__(
var_name=var_name,
ntypes=ntypes,
dim_descrpt=dim_descrpt,
neuron=neuron,
resnet_dt=resnet_dt,
numb_fparam=numb_fparam,
numb_aparam=numb_aparam,
rcond=rcond,
tot_ener_zero=tot_ener_zero,
trainable=trainable,
atom_ener=atom_ener,
activation_function=activation_function,
precision=precision,
layer_name=layer_name,
use_aparam_as_mask=use_aparam_as_mask,
spin=spin,
distinguish_types=distinguish_types,
exclude_types=exclude_types,
)
self.old_impl = False

def _net_out_dim(self):
"""Set the FittingNet output dim."""
return self.dim_rot_mat

def serialize(self) -> dict:
data = super().serialize()
data["dim_rot_mat"] = self.dim_rot_mat
data["old_impl"] = self.old_impl
return data

def output_def(self):
return FittingOutputDef(
[
OutputVariableDef(
self.var_name,
[3],
reduciable=True,
r_differentiable=True,
c_differentiable=True,
),
]
)

def call(
self,
descriptor: np.ndarray,
atype: np.ndarray,
gr: Optional[np.ndarray] = None,
g2: Optional[np.ndarray] = None,
h2: Optional[np.ndarray] = None,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
) -> Dict[str, np.ndarray]:
"""Calculate the fitting.
Parameters
----------
descriptor
input descriptor. shape: nf x nloc x nd
atype
the atom type. shape: nf x nloc
gr
The rotationally equivariant and permutationally invariant single particle
representation. shape: nf x nloc x ng x 3
g2
The rotationally invariant pair-partical representation.
shape: nf x nloc x nnei x ng
h2
The rotationally equivariant pair-partical representation.
shape: nf x nloc x nnei x 3
fparam
The frame parameter. shape: nf x nfp. nfp being `numb_fparam`
aparam
The atomic parameter. shape: nf x nloc x nap. nap being `numb_aparam`
"""
nframes, nloc, _ = descriptor.shape
assert gr is not None, "Must provide the rotation matrix for dipole fitting."
# (nframes, nloc, m1)
out = self._call_common(descriptor, atype, gr, g2, h2, fparam, aparam)[
self.var_name
]
# (nframes * nloc, 1, m1)
out = out.reshape(-1, 1, self.dim_rot_mat)
# (nframes * nloc, m1, 3)
gr = gr.reshape(nframes * nloc, -1, 3)
# (nframes, nloc, 3)
out = np.einsum("bim,bmj->bij", out, gr).squeeze(-2).reshape(nframes, nloc, 3)
return {self.var_name: out}
Loading

0 comments on commit 6451cdb

Please sign in to comment.